Page 140 - Algebra
P. 140

7.2. Rational Expression
A rational expression is an algebraic fraction which has polynomials in the numerator or denominator. Example: ๐‘ฅ2โˆ’2๐‘ฅ+1
๐‘ฅโˆ’2
Here, the numerator is a trinomial and the denominator is a binomial. Since, a rational expression is a fraction, it can be simplified using the operation of a fraction.
Rules for solving rational expressions:
   REMEMBER:
 โ€ข Rule of multiplication ๐‘ ร— ๐‘Ÿ = ๐‘๐‘Ÿ
๐‘ž ๐‘  ๐‘ž๐‘ 
  โ€ข Rule of division
Here, the denominators are both non-zero
โ€ข Rule of addition
You can add two rational expressions only when their denominator is the same.
โ€ข Rule of subtraction
You can subtract two rational expressions only when their denominator is the same.
๐‘ รท ๐‘Ÿ = ๐‘๐‘  ๐‘ž ๐‘  ๐‘ž๐‘Ÿ
๐‘+๐‘Ÿ=๐‘+๐‘Ÿ ๐‘ž๐‘ž๐‘ž
๐‘๐‘Ÿ๐‘โˆ’๐‘Ÿ
โˆ’= ๐‘ž๐‘ž๐‘ž
   Worked Example
    ๐‘ฅ2โˆ’5๐‘ฅโˆ’14 ๐‘ฅโˆ’5 Simplify ๐‘ฅโˆ’7 . 2๐‘ฅ+4
   Solution:
 ๐‘ฅ2โˆ’5๐‘ฅโˆ’14 ๐‘ฅโˆ’5
   Factorize the equation and use the rules of solving rational expression
 ๐‘ฅ2โˆ’5๐‘ฅโˆ’14 ๐‘ฅโˆ’5
  = ๐‘ฅโˆ’5 2
๐‘ฅโˆ’7
.
2๐‘ฅโˆ’4
๐‘ฅโˆ’7
.
2๐‘ฅ+4
 ๐‘ฅ2โˆ’7๐‘ฅ+2๐‘ฅโˆ’14 ๐‘ฅโˆ’5
= ๐‘ฅโˆ’7 .2๐‘ฅ+4 ..........(factorize the expression)
   ๐‘ฅ(๐‘ฅโˆ’7)+2(๐‘ฅโˆ’7) ๐‘ฅโˆ’5 = ๐‘ฅโˆ’7 . 2(๐‘ฅ+2)
   (๐‘ฅโˆ’7)(๐‘ฅ+2) ๐‘ฅโˆ’5
= ๐‘ฅโˆ’7 . 2(๐‘ฅ+2) .......... (cancel all the like terms)
   Page 139 of 177
 Algebra I & II





























































   138   139   140   141   142