Page 163 - Algebra
P. 163
Exercise
In all the questions, unless specified use i = √−1
1. Solve 7i4 – 3i7
2. Find the value of i20 + i0
e) 2
3.
4. If (p – qi) + (– a – bi) = 3p, find the value of (p + qi) (a – 2bi)
5.
6.
of b?
e) –2
a) 7 – 3i b) 7 + 3i
c) – 7 – 3i d) – 7 + 3i
e) Cannot be determined
a) –2 b) 1 c) –1 d) 0
6+5𝑖
Sam wrote a complex number as 2−3𝑖. He can write the number in the form of a + bi. Find the
value of a and b.
−3 28 3 −28 a) a = 13 , b = 13 b) a = 13 , b = 13
−3 −28 3 28 c) a = 13 , b = 13 d) a = 13 , b = 13
e) – 3 and 28
a)2(q2 +p2) b)2(–q2 –p2)
c)2(q2 –p2) d)q2 –p2
e)–q2 –p2
Find the value of 2−𝑖 8+6𝑖
a) 1 + i
b) 1 + 𝑖 10 5 1 𝑖
1 2𝑖
c) –
d) –
10 5
10 5
e) 1 + 2𝑖 10 5
If a function is p is defined as
p(x) = b√17 − 𝑥4, here b is a non-zero real constant. It’s given that p(2i) = 2. What is the value
a) 1 or −1 b) 2
c) 2 or –2 d) 1
Page 162 of 177
Algebra I & II