Page 163 - Algebra
P. 163

 Exercise
 In all the questions, unless specified use i = √−1
1. Solve 7i4 – 3i7
2. Find the value of i20 + i0
e) 2
3.
4. If (p – qi) + (– a – bi) = 3p, find the value of (p + qi) (a – 2bi)
5.
6.
of b?
e) –2
 a) 7 – 3i   b) 7 + 3i
c) – 7 – 3i   d) – 7 + 3i
 e) Cannot be determined
  a) –2 b) 1 c) –1 d) 0
 6+5𝑖
Sam wrote a complex number as 2−3𝑖. He can write the number in the form of a + bi. Find the
 value of a and b.
 −3 28 3 −28 a) a = 13 , b = 13 b) a = 13 , b = 13
 −3 −28 3 28 c) a = 13 , b = 13 d) a = 13 , b = 13
 e) – 3 and 28
 a)2(q2 +p2)   b)2(–q2 –p2)
c)2(q2 –p2)   d)q2 –p2
 e)–q2 –p2
 Find the value of 2−𝑖 8+6𝑖
 a) 1 + i
b) 1 + 𝑖 10 5 1 𝑖
1 2𝑖
c) –
d) –
10 5
10 5
 e) 1 + 2𝑖 10 5
 If a function is p is defined as
  p(x) = b√17 − 𝑥4, here b is a non-zero real constant. It’s given that p(2i) = 2. What is the value
 a) 1 or −1   b) 2
c) 2 or –2   d) 1
Page 162 of 177
 Algebra I & II




























































   161   162   163   164   165