Page 41 - Algebra
P. 41

Explanation:
1. Here,
a1 = 3, a2 = 6, b1= k, b2 = –5, c1= 7, c2 = –3 The two equations have no solution when
π‘Ž1 = 𝑏1 =ΜΈ 𝑐1, then the pair of linear equation has no solution. π‘Ž2 𝑏2 𝑐2
3=π‘˜=ΜΈ7
6 βˆ’5 βˆ’3 3=π‘˜
6 βˆ’5 1=π‘˜
2 βˆ’5
5 2
2. Let the cost of one table be x Let the cost of one chair be y 4x + 3y = 800.............(1)
8x + 5y = 1500...........(2) Multiply (1) by 2
8x + 6y = 1600........... (3) (3) – (2)
y = 100
4x + 3(100) = 800
4x = 500
x = 125
Cost of 3 tables and 3 chairs = 3x + 3y = 3(125) + 3(100) = 375 + 300 = $675
3.
π‘₯+2 = 1 π‘¦βˆ’3 3
3(x + 2) = (y – 3)
3x + 6 = y – 3
3x – y + 9 = 0......................(1)
π‘₯βˆ’3 = 1 𝑦+1 4
4(x – 3) = (y + 1)
4x – 12 = y + 1
4x – y – 13 = 0.......................(2)
Subtract the two equations. x – 22 = 0
x = 22
Put x = 22 in π‘₯+2 = 1 π‘¦βˆ’3 3
22+2 = 1 π‘¦βˆ’3 3
k =βˆ’
 Let the numerator of the fraction be x
 The denominator of the fraction be y
Page 40 of 177
 Algebra I & II
































































   39   40   41   42   43