Page 64 - Algebra
P. 64
11. f(x) = π₯ |π₯|
The function is defined as f(x) = π₯, π₯β₯0
βx, x<0
For π₯ β₯ 0,
f(x)=π₯ =1 π₯
For x < 0 f(x)= π₯ =β1
f(x) gives the output as 1 and β1. So, range = {1, β1}
12. The function is not defined for π₯2 Domain is R β {ββ6, β6, }
Now,
y = π₯2β3
π₯2β6
yx2 β 6y = x2 β 3 yx2 βx2 =6yβ3
x2 (y -1) = 3(2y β 1) x2 =3(2yβ1)
(y β1)
As x2 is a perfect square so,
3(2y β 1) β₯ 0 (y β1)
3(2y β 1) β₯ 0 and (y β 1) β₯ 0 y β₯ 1 and y β₯ 1, but y =ΜΈ 1
2
So, y β₯ 1 and y > 1 2
1
Range is (-β, 2] π (1, β)
βπ₯
x β₯ β2 or x β₯ 7
β 6 = 0 or x = Β±β6
13. bx is defined for all values of x, where b > 0
ββ₯0
14. logab is defined when a > 0, b > 0 and a =ΜΈ 1
(π₯2 β 5π₯ β 14)
x2 β 5x β 14 β₯ 0
x2 β 7x + 2x β 14 β₯ 0
x(x β 7) + 2(x β 7) β₯ 0
(x + 2) (x β 7) β₯ 0
β2 β€ x β€ 7
Therefore, (x + 2) > 0 and 15π₯ + 8 β 2π₯2 β₯ 0
x > β2 and 2x2 β 15x β 8 β€ 0
x > β2 and 2x2 β 16x + x β 8 β€ 0
x > β2 and 2x(x β 8) + 1(x β 8) β€ 0
x > β2 and (x β 8) (2x +1) β€ 0
x > β2 and x β€ 8 or x β€ β
1 2
x > β2 and β
1 2
β€ x β€ 8
β1
or 2 < x β€ 8
Page 63 of 177
Algebra I & II