Page 102 - konishipaper
P. 102
totheleftdirection.1nfrontofflameleadingedge,airflowis generatedbythebuoyancyoftrailingflame.1nliquid-phase,the thermocapilaryflowisinducedduetotemperaturediference betwenhotliquidnearflameleadingedgeandlowtemperature liquidaheadofflame.Atstep[b],theflamespreadsfasterthan theoneatstep[a]andgeneratesabigerthermocapilaryflowin thesamedirectionoftheflame.Tobedeservedspecialatention
istheexisteneoftemperαturevaleyaheadofflameleadingedge.
,
Thelowtemperaturefluidcomesupfromthebouomofliquid fuel.Thiscoldliquidisharmfultoformtheflamabilityvapor layerinfrontofflameleadingedgeandc1earlyobstructscrawl- ingflamefromshiftingtojumpingstage,becausethesurface temperatureinthis紅 eaisbelowtheflashpoin.tInthegas-phase, thesituationisthesamea~ step[a],thereisabuoyancy-induced airflowwhichmovesagainsttheflamespreaddirection.Thebuoy- ancy-inducedairflowandthethermocapilaryflowdirectagainst eachothercreatingasmal1circulationinthegas-phasejustahead oftheflameleadingedge.Atstep[c],astheregionofcoldsurface 1iquiddisapearsduetoheat-transferfromliquid-phaseandgas- phase,theflamablefuelvaporisacumulatedaheadoftheflame
Step[a]
Step[b]
Step[c]
Step[d]
Step[e]
Figure2Schematicdiagramsofpulsating flamespreadmechanism.
leadingedge.Ingas-phase,therecirculationcel1isdevelopedin itssizeandmightchangetheconcentrationfieldsubstantialy.At step[d],theflamemightjump,becausetheconditionofflam- mablevaporconcentrationisfulfi1led.
MEASUREMENTOFSURFACE TEMPERATUREAND CONCENTRATIONPROFILESINEACHPULSATING STEPS
Figure3throughFigure6show(a)thermographicimages, (b)surfacetemperatureprofilesmeasuredalongthelongitudinal centerlineoffueltray,and(c)concentrationprofilesmeasured bydualwavelengthholographicinterferometry(DWHI).The DWH1isoneoftheholographictechniquewhichusesthedepen- denceofGladstone-Daleconstantsonwavelengthtodetermine bothconc.entrationandtemperaturechange.WeadaptedtheDWHI tomeasurementofconcentrationprofilesoverspreadingflame indepn-propanolpool.Thedetailsaredescribedinourprevi- ous paper (lto et a,.1 19 97b).
Steoral:Onsetofpulsation Figures3(a)through(c)showtheinitiationprocesofpul-
sation,inwhichourpreviousstudiesrevealedthattheliquidflow wassmal,whereasairflowwasinducedbybuoyancyaheadof theflameleadingedge.Althoughtheflamefronthasatwo-di- mensionalstructure,thesurfacetemperaturehasinherentlythre- dimensionalnatureasshowninFig.3(a).Thefigure3(b)shows thatthesurfacetemperaturerapidlydecreasewiththedistance fromtheflameleadingedge.官 le旬 mperaturerangeoftheinfra- redcameraisnarowlyadjustedsothatthesensitivechangeof surfacetemperatureaheadofflameleadingedgecanbedetected. Therefore,althoughthepositionofflameleadingedgeisdeter- minedto血.atwherethesurfacetemperat町 eissaturated,thisflame positionisnotsameastherealflameone.At3mminfrontofthe flameleadingedge,thesurfacetemperaturedecreasesto24.5 C, whichisneartheflashJ>ointofn-propano.lThetemperatureIn- creasesagainupto27 Cat5mmaheadofflameedgeandrap- idlydecreasestoinitialiquidtemperature.AsshQwninFig.3(c), thevaporconcentrationprofi1esisalmostconstantoverthefuel surfaceandthepositionofleanflammablelimit,whichis2.2 vol%forn-propanol,is1m mabovethefuelsurface.百lequench- ingdistanceofspreadingflameoverliquidisdetermined0.8- lmminourpreviousstudies(Itoeta,.l197b).Evennearthe flameleadingedge,theleanflammablelimitexistswithinthe quenchingdistance.百lerefore,theflamecanotpropagateingas- phase.
Step[b]:Formationoftemperaturevall~~ Figures4(a)through(c)showtheformationptocesoftem-
peraturevaley.Thepreviousstudies(1toeta,.l197b)disclosed 出at;asmalrecirculationcel1atseveralmil1imeteraheadofflame leadingedgewasobservedingas-phase.1nliquid-phase, 出ermocapilaη,flowwasinducedbythetemperaturediference betweenthehotliquidunderflameandthecoldliquidfar合om flame.百lebuoyancyinducedflowwasgeneratedinsidetheliq- uidfuelat1-4mmunderthefuelsurface.Thetemperatureofthis liquidmightbesametotheinitialfueltemperature.Thesurface temperatureprofi1esconfirmedthattemperaturevaleyexistsat about5mmaheadofflameleadingedgeasshowninFig.4(b).
3
Copyright@ 19byASME