Page 140 - konishipaper
P. 140
268 FIRE-IgnitionandFlameSpread
tostep1.Oneofthemajorconclusionsobtained fromourpreviousstudies[8,9]wasthattherewasa cychc ap pearance and disap pearance of a cold (liq- uid)temperaturevaleywhosecyclefrequencywas welcorelatedwiththefrequencyofthemainflame pulsation.Wealsodiscusedaposiblereasonwhy therewasnopulsatingflamespreadundermicro- gravity.Ourthoughtwasthatconvectiveheattrans- feristhemajormodeofheattransferfromtheflame totheliquid,andundermicrogravitythereismuch weakerconvectionthaninnormalgravity,sothe convec世onefectisnotstrongenoughtocancelout 出e cold-temperature valey profiles once 出ey formedinthehquid,a1lowingthecoldvaleytocon- tinuouslyexist(therefore,nopulsatingspread).
Itmaybeinterestingtoreviewhownumerical modelscandealwithliquidtemperatureprofiles. Two-dimensionalnumericalmodehng[1]showeda lineardecayinthetemperatureoftheliquidahead oftheflameleadingedgeanddidnotpredictthe existenceofthecold-temperaturevaley.Atthebe- gining,wethoughtthiswasduetotwo-dimensional modelasumptionsbeingapphedtoactual也re-品目 mensionalphenomena.Later,出islineofthought wasprovedtobewrong,whentheNASAgroup[6] showed也attherewasa'pulsatingflamespreadover a出inliquidlayerpoledinasha1lowcircularpan wherenocold-temperaturevaleywasthoughttoex-
Toexplain出isdisagrement,wesearchedfora clueinthetemperaturestructurecreatedina_shal- lowliquidpolduringpulsa世ngflamespread.We conducted a flame-spread e守 eriment using the samerectangulartrayandanenclosurebox(50m m l o n g x 3 0 0 m m w i d e .x 4 0 0 m m h i g h ) , d e s c r i b e d inourpreviouse守 eriments[8-10],andmeasured thedetailedtemperaturestructureintheliquidus- ingHI,shadowgraph(SG),andIRtechniques.In particular,HIisveryefectiveinmeasuringtransient tempera旬 reprofileswi出 highspecialresolution (ourHIsystemcanoferamicrosecondtimere- sponseandabe仕er出an0.1m mspecialresolution). Interestingly,wefoundtherewasasmal-scaleliquid surfacewave(theheightofthecrestwasmeasured tobe0.9m mbyHI[1]forthe20m mdeeppol) justaheadofthespreadingflameedge.Inthispaper, wewilexplainthenatureof出isnewlyobserved sma1l-scalesurfacewaveanditsroleonpulsa也 19 flamespread.
ExperimentalMethods
Thefueltray(madefrompyrex)usedfor白isex- perimentissimilartothatusedpreviously[8,9],hav- ing dimensions of 30 0 m m long x 20 m m wide X sevendiferentheights(0.2,0.5,1.0,2.0,5.0,10,and 20mm).Thesevendiferenttrayheights.wereused toprovidesevendiferentliquiddepthsbykeping
altheothertraydimensionsandtheinitialiquid surfaceleveltothetraywalrimheightthesame. The bottom of the 廿 ay was made of Pyrex for SG measurement.A.smalpuotflamethatwaslocated atoneendofthetrayinitiatedtheflamespread出at propagatedtotheotherend.Thebehaviorofflame spreadwasrecordedbyahigh-sped_digitalvideo camera(120frames/sand41 X 10ーる m mspatial resolu世on).Theflame-spreadrateandpulsationfre- quencyweremeasuredfromtherecordeddigitalim- age.'Yith!hehighestsutpulsationfrequency_ob- served to be 12 Hz and its minimum traveling distancetobe0.5m m,theresultingmaximumeror isestimatedtobelesthanafewpercent.Tempera目 turestructurescreatedin也eliquidandliquidsur- faceweremeasuredbyHIandSGtechniques.The HItechniquewaspreviouslyapliedtoflame-spread e守 eriments [10]也ataresimilartothecurent stud)ん anditsproceduresarewelexpl瓜nedelse- where[10,12,13].TheSGtechniquewasemployed tomeasurere宜ectionofthebeamwhenitpases throughtheliquidverticaly.Apieceofwhitepaper onwhich450 linesweredrawnevery1m mwas placedontheoutersurfaceofthePyrex廿aybotom. AHe-Nelaser,asthelightsource,wasplacedabove 吐letraytoprovideaverticalbeamthroughtheliq- uid.Amiror(surfacearea:5cmwideX 5cmlong) wasplacedabovetheliquidsurfaceata450 angleto recordthebeamreflec世ononthepape工 OurSG technique[14]hashigh~r sensi世.vi守than也eordinal onethatwasapliedbyAkita[15].AnIRcamera witha8-13μmwavelengthdetectorwasalsoplaced abovetheliquidtraytomeasuretheliquidsurface temperatureduringtheflamespread.Ourprevious tests[16,17]connrmedth武也eemisivityofbutanol was0.95.andtheefectofthebluebutanolflame hadnegligibleefectsontheIRliquidsurfacetem- peraturemeasurement.A75μmdiameterChromel- Alumelthermocouplewasplacedat吐lecenterand justbelowthesurfaceofn-butanoltomeasurethe initialiquidtemperature.
ResultsandDiscusion Fiοe-StepProcesesηiPulsatingFlameSpread
Figure1showsthedetailedschema世csofstep[b] (sebelow)inthenve.,stepprocesofpulsa世ng flamespread[9].Theuppercolumnshowsthetop view,andthebottomcolumnshowsthesideview. Wemeasuredthefolowingparametersduringboth 也ecurentandpreviousstudies[8-10,12J.:theflame frontspreadrate,theexistenceandthespreadrate ofasmal-scalesurfacewave,thethermalstructure ofacold-temperaturevaley,transientveloci句Tpro- filesintheliquidandgasphases,andthefuelvapor concentrationabovethefuelsurface.Tohelpread- erstobeterunderstandwhatwehavedoneinthis