Page 147 - konishipaper
P. 147

   K.Takahashietal./ProcedingsoftheCombustionInstitute30(205)271-27 273
his自amespreadtheoryusedaliquidpoldepthas anaproximationforacharacteristiclengthand pointedoutthatinrelationtothechoiceofchar- acteristiclengths:“.• • itisbothpos sibleanddesir- able to pursue more careful analysis to 0btain improvedestimate(ofspreadrateusingapropri- atecharacteristiclengths)"[1].Acordingly,we experimentaly measured both characteristic lengths,whichcanhelpimproveWil1iams'theory, andalsousedtheminouranalyses.
2.Theoreticalanalysisandresults 2.1.Bαsicequation
Ourobjectivewastostudytheinstabilityof laminar sub問 surface layer flow ahead of the spreadingflame.Temperaturecoeficientofsur- facetensionforceandotherphysicalproperties arebothtreatedasconstants.Ourinstabilityanal- ysisisbasedonourpreviousstudy[12,13J.Asche- maticofsub-surfacelayerflowisshowninFig.2. Althesymbolsusedaredefinedinthenomencla- ture.Liquidtemperaturejustaheadoftheflame leadingedgeishigherthanthebulkliquidtemper- ature,becausethehightemperatureliquidgener- ated by the flame moves to the upstream directionbysurfacetensionforce.Thecontinuity and momentum equations for the sub-surface layercanbe,respectively,expresedas:
ん+(hu)x= 0, (1) 附([内十t+(学)x
(2)
nomenclature.InEq.(2),τiisthesurfaceshear stresduetoMarangoniefectandisexpresedas:
ThethirdtermontheLHSinEq.(2)isduetosur- face tension, where d = A exp ik(x - ct) is the expresionforthesurfacewave,k(三 2n/A)isthe wavenumber,A isthewavelength,cisthewave velocity,andalothersymbolsaredefinedinthe
土terminthedynamicwaveexpresion.
If the surface perturbation is expres sed as d=Aexpi(kx-ωt),we obtain the folowing
Surfacewave
λ'
Wal Fig.2.Sub-surfacelayerflowmodelandsymbols.
1
3μ
4
.3μl
6σ oT dσ
τi=-=σT一 σT三 一 (3)
ß(三 J~
内
dT
l/uh) andthecontinuity叩 tion,
ox -.ox -
If the momentum displacement thicknes:
2
<
Eq.(1), aresubstitutedintoEq.(2),wecanobtain
thefolowingequation: 九
十九
hUt+(2s-l)hux+(s-l)l
re._ +22;(Sxh+Shx)=-(τ i - τb)・
P
ghh x
(4)
Conducting perturbation analysis (detailed in [14])forEqs.(1)and(2),thefolowingwaveequa- tionscanbe0btained.
合(+C+ where
o
ま)
(:t+C_~)ð十長(~十C
,
pAz' (6)
一 l一 一ーゥ "1,12h,__qi
C:I:=su:l:~I(s-1)ßu2 十gh+σe~+ασT一 Iρ
Co=u.
ThefirsttermontheLHSofEq.(5)representsthe dynamicwavewhereC+andC,respectively,rep- resenttheforwardandreversepropagationveloc- ities. The second term on the LHS of Eq. (5) representsthekinematicwave,where Coisthe propagationvelocityinthedirectionofflow.Eq. (5)representsthesurfacewaveasalinearcombi- nationofthedynamicwaveandthekinematic wave. The 1¥在arangoni efect apears in the
equationfromEq.(5):
.3μ
Hence,ωmaybeaproximatedas
ph-
c
(ω -kC_)(ω-kC+)+iっ (ω -kCo)=O. (7) ph-
r1•
ω空く kC+-iっ (C+-Co)/(C+-C_)
+kC一 1寸 (Co-C_)/(C+-C_)>. (8) ph-. .J
IfIm(ω)>0,thedynamicwaveisunstable,result- inginCo~ C+.Then,itbecomesaneutralysta回 blecondition,Co=C+Thefolowingequation describesthegenerationofasurfacewave:
n¥-? "1, 12h, qi
(1-s)グ =gh+σkー十 ασTよ . (9) p , - - - < pA[
x+sxl
か
=0






































   145   146   147   148   149