Page 67 - konishipaper
P. 67

 232
T. KONISHI and A. lTo
becausehighheatevaporationwasneededtocause suf ficientconvection.A Pyrexfueltrayof20mmwidthx 30mmdepthx120mmlengthwasused.Thesidesofthe.fueltraywere2mmthick.Chromel-Alumelthermo- coupJesof50-mmdiameterwereusedtomeasurethetemperatureofliquidfuelandatmosphere.Oneofthem wasinsertedintotheliquid1mmunderthesurfacewiththejunctionlocatedatthecen-terofthetray.Air temperaturewasmeasuredat10cmabovethefuelsurface.
A schematicdiagramofthemeasurementsystemsisshowninFig.2.Thelightsourceforaholographic i~terferometer isa5m WHe-Nelaser;thelaserbeamisdividedintotwobeamsbyapartialyr~flecting miror. Theobjectandreferencewavesinterferewitheachotherattheholographicplate~ A reaI-timeholographic interferometrywasused.1neachexperimen七theinterferogramforthereferenceconditionwasphotographed withal-sexposuretirne.ThehologramswererecordedonaAgfa-Gevaert10E75glasplate,and-developedfor 2minitesinRefinal.TheresultingfringeshiftcausedbyevaporationwererecordedbyaCCDcamerawithan exposuretimeof1/250sand'canbeacuratelyinterpretedbyimageprocesing.
Themeasurementsofthesurfacetemperaturewereaccomplishedbyusinganinfraredcamerahavinga spectralrangeof8.12μm,temperatureresolutionof0.1oCandtimeresolutionof30msec.Infraredelectromagnetic wavesemitedfromthefuelsurfacewerereflectedonagoldmirorandcanbetakenbyaninfraredcamera.An IRcamerawascalibratedbyaCopper-Constantanthermo-couplesof75mmdiameterplacedonthemethanol surface.Itwasfoundthattheemisivityofamethanolis0.96.
Toobservetheconvectivemotioninthesub-surfacelayer~ 10~20μm-diameter aluminumparticleswere sprinkled ontotheliquidsurface.Usingthe400mW Ar-ionlaserbeamandacylindricalensforaparticletrack velocimetry,a1mmthicklasershetwasestablishedwithanapproximately35degreeopeningangle.The trajectoriesoftheseparticleswererecordedbyeitherahomevideocameraorahighspeedcamera.
3.
Fig.l.Aschematicdiagramofhighsped shutersystem.
RESULTSANDDISCUSSION
Fig.2.Aschematicdiagramofexperimental aparatus.
χ:
Goldmiror
~
A seriesofpicturesthatdemonstratetheinfraredphotographsoftheliquidsurfacetemperatureatthe
0 liquidbulktempera旬 reTf=30oCinFig.3(a),interferogramsinsidetheliquidphaseatTf=15CinFig.3(b)and
theinterferogramsofthegasphase atTf=30oC areshowninFig.3(c).Numbersindicatedintheleftsideofthe picturesarethetimee]apsedfromtheonsetofevaporation.
IntheinfraredphotographsshowninFig.3(a),thetemperatureoftheliquidsurfaceisindicatedbythe densityofgrayscale,i.e.temperatureincreaseswithincreasedbrightnes.Itwasobservedthati1l-definedsmal scalecelsofwavelengthlmmformedafter0.2secondfromtheonsetofevaporationandthende:velopedinto polygonalcels.Thequasi-steadystateconditionwasreachedat2secondsfromtheonsetofevaporation.These celsareabout4mmwavelengthinsizeandmovebackandforthonthesurface.Thetemperatureatthecenterof thecel,whichisindicatedbybrightarea,is0.50 Chigherthanthatofnodalines.Asthesurfacetensionforce decreaseswithincreasingsurfacetemperature,theliquidsurfaceatthecenterofthecelispuledawaylateraly. Thismayleadtothecircularmotionwhichisupflowbeneaththecenterofthecelanddownflowbeneaththe nodaline.
AseriesofinterferogramsintheliquidphaseisshowninFig.3(b).Onefringeshiftcorespondstothe temperaturediferenceof0.080 Cformethanolwith20mmpathlength.Fortheinterferogramsobtainedearlyin theprbces,fringesareparaleltotheliquidsurface.Unfortunatelya-darklayercoversthefringesnearthesurface, whichisfromrefractionoflightduetomeniscusnearthePyrexwal,anddificulttoeliminateinthissystem.A

















































































   65   66   67   68   69