Page 84 - konishipaper
P. 84

 andthetemperatureresolutiontobe:!:0.1.C[lto,Masuda,andSaito, 1991]. UsingtheHIsystem,weobservedalargeliquidconvection bothintheuniformandpulsatingspreadregions. Theliquidconvec- tionintheuniformspreadregionwasasurprise,becausetheheadof theliquidconvectionprecededtheflame'sleadingedgebyaproxi- mately1cm[Ito,Masuda,andSaito,191],whichisentirelydiferent fromAkita'sresult[1972]. Tomakesureoftheac curacyofthedata, werepeatedtheexperimentsseveraltimesandfoundthereproducibil・ itytobewithin土 90%. Thus,weproposedanewmechanism:the flamespreadintheuniformspreadregionisgovernedbytheliquid convection[Ito,Masuda,andSaito,191]. However,atthattimewe didnotrealyunderstandwhyAkita'sshadowgraftresultsweresodif- ferentfromourHIresuIts.
Later,HowardRos'sgroupatNASALewisResearchCenterap- pliedRainbowSchlierenDeflectometry(RSD)tomeasureliquidcon- vectiongeneratedbythespreadingflame[MilerandRoss,192].They foundlitIeliquidconvectionaheadoftheflame'sleadingedgeinthe uniformspreadregion. TheirRSDdataweresimilartoAkita's shadowgraphsanddisagredwithourHIresults. Overthepastthre years,bothNASAandourgrouphavetriedtounderstandthereasons forthedisagrement,butfaHedtodosountilaseriesofparametric experimentswascompleted.Inthoseexperiments,theefectsofsix diferentparameterswereinvestigated:sensitivityofbothRSDandHI systems,impurityofpropanol(ifany),therelativehumidityoftheair, theambientairtempera印 re,severaldiferenttypesofignitionmethod, andfinalydiferenttraywidths. Wefoundthatthefirstfiveparam- etershadlit1einf1uenceonthedisagrement. However,whenwe checkedtheefectoftraywidth(0.5,1,and2cm)ontheliquidconvec- tion,theleastsustectedparameter,asurprisingresultemerged:the0.5 cmwidetrayhadalargeliquidconvectionintheuniformspreadre- gion,Whilethetraysthatwere1cmand2cmwidehadathinlayerof liquid convection. 1t was so thin and smal l that only a very sensitive measurementtechniquecoulddetecti.t.Theresultforthe2-cmtray wasverysimilartotheNASA'sresultforthe2四 cmtray. A closerlo ok attheirRSDresultalsorevealedasmalandthinlayerofliquidcon- vectionthatwasalwaysaheadoftheflame'sleadingedge. Compari- sonofthesefind
TheCurrentProblem NASA'smicrogravitytestresultsshowedthatpulsatingspreaddid
notocurineithershalowordeppolexperiments[Ros,194];in- steadtheflamewasextinguished,indicatingtheimportanceofthebuoy- ancyefectinthegasphaseonthemechanismofpulsation. Schiler andSirignano,usingnumericalcalculations[192],predictedtheex- istenceofaverysmalcirculationinthegasphaseaheadoftheflame's leadingedge. Theysugestedthatthegω-phasecirculation,whichis uniqueinthepulsatingspreadandapearswiththeliquid-phaseCIrcu-
lation,mayplayanimportantroleinflamepulsation[192,196]. ThereareLDVflowmeasurementdataobtainedwithLaser-Dopler Velocimetry(LDV)bySantoroeta.1[1978]showingagas-phasecir- culationofaproximatelyl-cmdiameterinthepulsatingspreadre- gion. However,theirLDVresultisratheraqualitativeindicationof theformationofcirculation.
Toconfirmtheprediction[SchilerandSirignano,192;and SirignanoandSchiler,196]andunderstandtheroleofthesmalgas- phasecirculationintheflamepulsation,transientvelocityprofilesin thegasphasejustabovetheliquidsurfaceandjustaheadoftheflame's leadingedgemustbemeasured. Thesemeasurementsarenoteasy, becausetherateofflamespreadvariesfromafewcentimeterstoafew tensofcentimeterspersecondandthetargetregion,wheredetailed velocityprofilesareneded,isanorderofseveralmilimetersindiam- eter.
PreviouslyweleamedthatLDVwasnotsuficientlyaClratefor ourmeasurements[Venkatesh,Ito,Saito,andWichman,196]. In- steadweusedPTLStomeasuref10wprofilesin2-Dwithaspatial resolutionontheorderofamilimeterintheprimaryanchoringregion ofasmalpolfire[Venkatesh,Ito,Saito,andWichman,196].Based onthatexperience,weapliedthesametechniqletomeasureatime seriesofdetailedvelocityprofilesinthepulsatingspreadregion. Asa result,weconfirmedtheformationofasmalcirculationaproximately inthesamelocationaspredictedbytheUCInumericalmodel[Schiler andSirignano,.192].Wealsoconfirmed,inagrementwiththemodel prediction,thattheformationofasmalcirculationapearedonlyin thepulsatingspreadregion.
Tofurtheradvanceourunderstandingoftheflamespreadover liquids,thedirectmeasurementofpropanolconcentrationovertheliq- uidsurfacejustaheadoftheflame'sleadingedgewasconductedusing D W H I. O u r D W H I d a t a a r e a c c u r a t e w h e n t h e f1 0 w o f t h e g a s p h a s e hasa2-Dprofile. Whenthef10wprofileshiftsfromthe2-Dto3-D, ourcurentDWHIsystemwi1l10seitsaclracy. Toovercomethis limitation,wemustworkonthedevelopmentofanadvanced3-D-DWP.J system,whichisbeyondthescopeofthispaper.
EXPERIMENTALMETHODS Flame-SDreadTest-ADoaratus
TheFlame-spreadaparatls(Fig.1)usedforthisstldyisesen- tialythesameasthatusedinapreviousflame目 spreadstudy[Ito, Maslda,andSaito,191;Ito,Saito,andCremers,195;andTashtoush, Narumi,Ito,Saito,andCremers,196]. APyrextrayof2cmwideX 2.5cmde ep X 25cmlongwasused. Thetwolongsidesofthefl lel trayweremadeofPyrexofO.2-cmthicknes. Theentireliquidtray wasenclosedinaglascel14cmhighX 15cmwideX 35cmlongin ordertorninimizelaboratorydraftandprovidearepeatableflame-spread condition.百1et怠mperatureofflelwasmeasuredbyplacingachromel- alumelthermocouplewith50μmwirediameterwhichwasplacedat thecenterofthetray2mmbelowthefl lelsl lrface. The臼 mperatureof ambientairwasmeasuredneartheglassidewalbythesametypeof thethermocolpleusedintheabove. Anejector-nozlewasaddedto thepreviolslydevelopedparticlefeder[Venkatesh,Ito,Saito,and Wichman,196]sothattalcpartic1escoulduniformlydisperseover theliqlidsurface.Theuniformityofp紅 tic1edistributionwaschecked vislaly.Aninfrared(IR)cameraandthermalimagingsystemthat weredevelopedduringourpreviouslpwardflamespreadexpeliments [Qian,Ishida,andSaito,194]wereapliedtomeasurethe2-Dtem- poralmapofliquidsurfacetemperatlre. Anormalvideocamerawas

























































































   82   83   84   85   86