Page 18 - Vayyar in the News
P. 18

The first application of Vayyar’s chip is medical: It’s being developed to detect tumors in breast tissue. Since it can be produced at a fraction of the cost, and physical size, of today’s solutions, it potentially makes breast cancer screening accessible and affordable to people around the globe.
What else could it be used for? That’s where you come in. Walabot is being released publicly in April so that robot makers and hardware tinkerers can build their own apps for Android, Raspberry Pi, or most any other computer with a USB connection. “Why limit the technology for one startup when you can actually go and allow other people to innovate?” says Melamed, a former Intel executive and Israeli Defense Forces engineer.
Walabot has seemingly endless potential applications. It could be used to analyze your breathing while you sleep, or examine root structures in your garden, or track the speed of cars racing past your house. And when it comes to video gaming, Melamed says this technology is far more accurate than any other single motion sensor currently on the market. It could help untether VR headsets by pairing with sensors placed on the body–perhaps simple bands around players’ arms and legs.
Panning for gold with Walabot.
Melamed uses the example of a simple virtual ping-pong match. Right now, the only moving body parts would be the head and a hand, since that’s all that can be tracked. “I want to see your body, I want to see your movement, right?” says Melamed. “You have those other technologies,
like accelerometers–the problem with accelerometers is they drift. What we can do with this technology is actually put several sensors on your body and track your body in a room like 5 meters by 5 meters, to the level of a centimeter, and now this is a totally different kind of feeling, I can actually see your limbs and we don’t drift.”
Of course, accelerometer-based technologies like the Gear VR, Oculus Rift, and Google Cardboard have all addressed and continue to minimize the drift issue by applying other sensor-based technologies to their processes—and there are other companies on the market that are attempting to bring the full-body experience to VR via sensors placed on the body. The difference is that RF technology can be deployed for virtual reality pretty successfully without the aid of other devices like accelerometers or magnetometers.
 



























































































   16   17   18   19   20