Page 1144 - College Physics For AP Courses
P. 1144
1132 Chapter 25 | Geometric Optics
Figure 25.20 The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit: Alfredo55, Wikimedia Commons; NASA)
We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. Those colors are associated with different wavelengths of light, as shown in Figure 25.21. When our eye receives pure-wavelength light, we tend to see only one of the six colors, depending on wavelength. The thousands of other hues we can sense in other situations are our eye’s response to various mixtures of wavelengths. White light, in particular, is a fairly uniform mixture of all visible wavelengths. Sunlight, considered to be white, actually appears to be a bit yellow because of its mixture of wavelengths, but it does contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors plotted versus wavelength in Figure 25.21. What this implies is that white light is spread out according to wavelength in a rainbow. Dispersion is defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion occurs whenever there is a process that changes the direction of light in a manner that depends on wavelength. Dispersion, as a general phenomenon, can occur for any type of wave and always involves wavelength-dependent processes.
Dispersion
Dispersion is defined to be the spreading of white light into its full spectrum of wavelengths.
Figure 25.21 Even though rainbows are associated with seven colors, the rainbow is a continuous distribution of colors according to wavelengths. Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index of
refraction, as we saw in The Law of Refraction. We know that the index of refraction depends on the medium. But for a given medium, also depends on wavelength. (See Table 25.2. Note that, for a given medium, increases as wavelength
decreases and is greatest for violet light. Thus violet light is bent more than red light, as shown for a prism in Figure 25.22(b), and the light is dispersed into the same sequence of wavelengths as seen in Figure 25.20 and Figure 25.21.
Making Connections: Dispersion
Any type of wave can exhibit dispersion. Sound waves, all types of electromagnetic waves, and water waves can be dispersed according to wavelength. Dispersion occurs whenever the speed of propagation depends on wavelength, thus separating and spreading out various wavelengths. Dispersion may require special circumstances and can result in spectacular displays such as in the production of a rainbow. This is also true for sound, since all frequencies ordinarily travel at the same speed. If you listen to sound through a long tube, such as a vacuum cleaner hose, you can easily hear it is dispersed by interaction with the tube. Dispersion, in fact, can reveal a great deal about what the wave has encountered that disperses its wavelengths. The dispersion of electromagnetic radiation from outer space, for example, has revealed much about what exists between the stars—the so-called empty space.
This OpenStax book is available for free at http://cnx.org/content/col11844/1.14