Page 794 - College Physics For AP Courses
P. 794

782 Chapter 18 | Electric Charge and Electric Field
 Figure 18.2 Benjamin Franklin, his kite, and electricity.
When Benjamin Franklin demonstrated that lightning was related to static electricity, he made a connection that is now part of the evidence that all directly experienced forces (except gravitational force) are manifestations of the electromagnetic force. For example, the Italian scientist Luigi Galvani (1737-1798) performed a series of experiments in which static electricity was used to stimulate contractions of leg muscles of dead frogs, an effect already known in humans subjected to static discharges. But Galvani also found that if he joined one end of two metal wires (say copper and zinc) and touched the other ends of the wires to muscles; he produced the same effect in frogs as static discharge. Alessandro Volta (1745-1827), partly inspired by Galvani's work, experimented with various combinations of metals and developed the battery.
During the same era, other scientists made progress in discovering fundamental connections. The periodic table was developed as systematic properties of the elements were discovered. This influenced the development and refinement of the concept of atoms as the basis of matter. Such submicroscopic descriptions of matter also help explain a great deal more. Atomic and molecular interactions, such as the forces of friction, cohesion, and adhesion, are now known to be manifestations of the electromagnetic force.
Static electricity is just one aspect of the electromagnetic force, which also includes moving electricity and magnetism. All the macroscopic forces that we experience directly, such as the sensations of touch and the tension in a rope, are due to the electromagnetic force, one of the four fundamental forces in nature. The gravitational force, another fundamental force, is actually sensed through the electromagnetic interaction of molecules, such as between those in our feet and those on the top of a bathroom scale. (The other two fundamental forces, the strong nuclear force and the weak nuclear force, cannot be sensed on the human scale.)
This chapter begins the study of electromagnetic phenomena at a fundamental level. The next several chapters will cover static electricity, moving electricity, and magnetism – collectively known as electromagnetism. In this chapter, we begin with the study of electric phenomena due to charges that are at least temporarily stationary, called electrostatics, or static electricity.
The chapter introduces several very important concepts of charge, electric force, and electric field, as well as defining the relationships between these concepts. The charge is defined as a property of a system (Big Idea 1) that can affect its interaction with other charged systems (Enduring Understanding 1.B). The law of conservation of electric charge is also discussed (Essential Knowledge 1.B.1). The two kinds of electric charge are defined as positive and negative, providing an explanation for having positively charged, negatively charged, or neutral objects (containing equal quantities of positive and negative charges) (Essential Knowledge 1.B.2). The discrete nature of the electric charge is introduced in this chapter by defining the elementary charge as the smallest observed unit of charge that can be isolated, which is the electron charge (Essential Knowledge 1.B.3). The concepts of a system (having internal structure) and of an object (having no internal structure) are implicitly introduced to explain charges carried by the electron and proton (Enduring Understanding 1.A, Essential Knowledge 1.A.1).
An electric field is caused by the presence of charged objects (Enduring Understanding 2.C) and can be used to explain interactions between electrically charged objects (Big Idea 2). The electric force represents the effect of an electric field on a charge placed in the field. The magnitude and direction of the electric force are defined by the magnitude and direction of the electric field and magnitude and sign of the charge (Essential Knowledge 2.C.1). The magnitude of the electric field is proportional to the net charge of the objects that created that field (Essential Knowledge 2.C.2). For the special case of a spherically symmetric charged object, the electric field outside the object is radial, and its magnitude varies as the inverse square of the radial distance from the center of that object (Essential Knowledge 2.C.3). The chapter provides examples of vector field maps for various charged systems, including point charges, spherically symmetric charge distributions, and uniformly charged
This OpenStax book is available for free at http://cnx.org/content/col11844/1.14


























































































   792   793   794   795   796