Page 936 - College Physics For AP Courses
P. 936
924 Chapter 21 | Circuits, Bioelectricity, and DC Instruments
Knowledge 5.C.3). Energy conservation is discussed in terms of the loop rule which specifies that the potential around any closed circuit path must be zero. Charge conservation is applied as conservation of current by equating the sum of all currents entering a junction to the sum of all currents leaving the junction (also known as the junction rule). Kirchoff’s rules are used to calculate currents and potential differences in circuits that combine resistors in series and parallel, and resistors and capacitors.
The concepts in this chapter support:
Big Idea 4 Interactions between systems can result in changes in those systems.
Enduring Understanding 4.E The electric and magnetic properties of a system can change in response to the presence of, or changes in, other objects or systems.
Essential Knowledge 4.E.5 The values of currents and electric potential differences in an electric circuit are determined by the properties and arrangement of the individual circuit elements such as sources of emf, resistors, and capacitors.
Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws. Enduring Understanding 5.B The energy of a system is conserved.
Essential Knowledge 5.B.9 Kirchhoff’s loop rule describes conservation of energy in electrical circuits. Enduring Understanding 5.C The electric charge of a system is conserved.
Essential Knowledge 5.C.3 Kirchhoff’s junction rule describes the conservation of electric charge in electrical circuits. Since charge is conserved, current must be conserved at each junction in the circuit. Examples should include circuits that combine resistors in series and parallel.
21.1 Resistors in Series and Parallel
Learning Objectives
By the end of this section, you will be able to:
• Draw a circuit with resistors in parallel and in series.
• Use Ohm’s law to calculate the voltage drop across a resistor when current passes through it.
• Contrast the way total resistance is calculated for resistors in series and in parallel.
• Explain why total resistance of a parallel circuit is less than the smallest resistance of any of the resistors in that circuit.
• Calculate total resistance of a circuit that contains a mixture of resistors connected in series and in parallel.
The information presented in this section supports the following AP® learning objectives and science practices:
• 4.E.5.1 The student is able to make and justify a quantitative prediction of the effect of a change in values or arrangements of one or two circuit elements on the currents and potential differences in a circuit containing a small number of sources of emf, resistors, capacitors, and switches in series and/or parallel. (S.P. 2.2, 6.4)
• 4.E.5.2 The student is able to make and justify a qualitative prediction of the effect of a change in values or arrangements of one or two circuit elements on currents and potential differences in a circuit containing a small number of sources of emf, resistors, capacitors, and switches in series and/or parallel. (S.P. 6.1, 6.4)
• 4.E.5.3 The student is able to plan data collection strategies and perform data analysis to examine the values of currents and potential differences in an electric circuit that is modified by changing or rearranging circuit elements, including sources of emf, resistors, and capacitors. (S.P. 2.2, 4.2, 5.1)
• 5.B.9.3 The student is able to apply conservation of energy (Kirchhoff’s loop rule) in calculations involving the total electric potential difference for complete circuit loops with only a single battery and resistors in series and/or in, at most, one parallel branch. (S.P. 2.2, 6.4, 7.2)
Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit on charge flow is called resistance. The simplest combinations of resistors are the series and parallel connections illustrated in Figure 21.2. The total resistance of a combination of resistors depends on both their individual values and how they are connected.
This OpenStax book is available for free at http://cnx.org/content/col11844/1.14