Page 151 - เชื้อเพลิงชีวภาพและชีวเคมีภัณฑ์โดยจุลินทรีย์
P. 151
113
Fangkum A., Reungsang A. Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: Effects of initial pH and substrate concentration. Int J Hydrogen Energy 2011; 36: 8687–8696.
Fox J.D., He Y.P., Shelver D., Roberts G.P., Ludden P.W. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum. J Bacteriol 1996; 178: 6200–6208.
Gallon J.R. Reconciling the incompatible: N2 fixation and O2. New phytol 1992; 122: 571–609.
Gardner K.H., Blackwell J. The structure of native cellulose. Biopolymers 1974; 13: 1975–2001.
Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P.N.L., Esposito G. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl Energy 2015; 144: 73–95.
Gonzales R.R., Sivagurunathan P., Parthiban A., Kim S.H. Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production. Int Biodeterior Biodegrad 2016; 113: 22–27.
Graentzdoerffer A., Rauh D., Pich A., Andreesen J.R. Molecular and biochemical characterization of two tungsten and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol 2003; 179: 116–130.
Guoxin H., Hao H. Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent. Biomass Bioenergy 2009; 33: 899–906.
Hamilton C., Calusinska M., Baptiste S., Masset J., Beckers L., Thonart P., Hiligsmann S. Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium butyricum CWBI1009. Int J Hydrogen Energy 2018; 43: 5451–5462.
Han S.K., Shin H.S. Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 2004; 29: 569–577.