Page 164 - เชื้อเพลิงชีวภาพและชีวเคมีภัณฑ์โดยจุลินทรีย์
P. 164

126
 Van Ginkel S.W., Logan B. Increased biological hydrogen production with reduced organic loading. Water Res 2005; 39: 3819–3826.
Venkata Mohan S., Vijaya Bhaskar Y., Murali Krishna P., Chandrasekhara Rao N., Lalit Babu V., Sarma P.N. Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: Influence of fermentation pH and substrate composition. Int J Hydrogen Energy 2007; 32: 2286–2295.
Vignais P.M., Billoud B.    biological function of hydrogenases: an overview. Chem Rev 2007; 107: 4206–4272.
Vignais P.M., Colbeau A. Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 2004; 6: 159–188.
Vijayaraghavan K., Ahmad D., Ibrahim M.K.B. Biohydrogen generation from jackfruit peel using anaerobic contact filter. Int J Hydrogen Energy 2006; 31: 569–579.
Wang B., Wan W., Wang J. Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresour Technol 2009; 100: 1211–1213.
Wang C.C., Chang C.W., Chu C.P., Lee D.J., Chang B. V., Liao C.S. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 2003; 102: 83–92.
Wang C.H., Lin P.J., Chang J.S. Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with municipal sewage sludge. Process Biochem 2006; 41: 1353–1358.
Wang G., Mu Y., Yu H.-Q. Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochem Eng J 2005; 23: 175–184.
Wang J., Wan W. Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 2008a; 33: 1215–1220.
Wang J., Wan W. Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 2008b; 33: 5392–5397.























































































   162   163   164   165   166