Page 217 - เชื้อเพลิงชีวภาพและชีวเคมีภัณฑ์โดยจุลินทรีย์
P. 217

179
 Keskin T., Hallenbeck P.C. Enhancement of biohydrogen production by two-stage systems: Dark and photofermentation. Biomass Conversion 2012; 313–340.
Kim D.H., Kim M.S. Hydrogenases for biological hydrogen production. Bioresour Technol 2011; 102: 8423–8431.
Kim D.H., Son H., Kim M.S. Effect of substrate concentration on continuous Photo- fermentative hydrogen production from lactate using Rhodobacter sphaeroides. Int J Hydrogen Energy 2012; 37: 15483–15488.
Kim J.S., Ito K., Takahadhi H. Production of molecular hydrogen by Rhodopseudo monas sp. J Ferment Technol 1982; 46: 937–941.
Kim M.S., Baek J.S., Lee J.K. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131         mutant. Int J Hydrogen Energy 2006; 31: 121–127.
Koku H., Eroglu I., Gunduz U., Yucel M., Turker L. Aspects of metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 2002; 27: 1315–1329.
Koku H., Eroglu I., Gündüz U., Yücel., M., Türker L. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 2003; 28: 381–388.
Kondo T., Arakawa M., Hiral T., Wakayama T., Hara M., Miyake J. Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. J Biosci Bioeng 2002; 93: 145–150.
Kyle D.J., Ohad I., Arntzen C.J. Membrane protein damage and repair: Selective loss of a quinone-protein function in chloroplast membranes. Proc Natl Acad Sci USA 1984; 81: 4070–4074.
Lambert G.R., Smith G.D. Hydrogen formation by marine blue—green algae. FEBS Lett 1977; 83: 159–162.
























































































   215   216   217   218   219