Page 221 - เชื้อเพลิงชีวภาพและชีวเคมีภัณฑ์โดยจุลินทรีย์
P. 221

183
 Prince R.C., Kheshgi H.S. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Micro biol 2005; 31: 19–31.
Rocha J.S., Barbosa M.J., Wijffels R.H. Hydrogen production by phososynthetic bacteria: culture media, yields and efficiencies. Biohydrogen II 2001; 3–32.
Sakurai H., Masukawa H. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. Mar Biotechnol 2007; 9: 128–145.
Serebryakova L.T., Sheremetieva M.E., Lindblad P. H2-uptake and evolution in the unicellular cyanobacterium Chroococcidiopsis thermalis CALU 758. Plant Physiol Biochem 2000; 38: 525–530.
Shi X.Y., Yu H.Q. Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrogen Energy 2006; 31: 1641–1647. Shi X.Y., Yu H.Q. Response surface analysis on the effect of cell concentration and light
intensity on hydrogen production by Rhodopseudomonas capsulate. Process
Biochem 2005; 40: 2475–2481.
Singh S. P., Srivastava S.C., Pandey K.D. Hydrogen production by Rhodopseudomonas at
the expense of vegetable starch, sugarcane juice and whey. Int J Hydrogen
Energy 1994; 19: 437–440.
Skjanes K., Lindblad P., Muller J. Bio CO2- a multidisciplinary, biological approach using
solar energy to capture CO2 while producing H2 and high value products.
Biomol Eng 2007; 24: 405–413.
Stal L.J., Krumbein W.E. Oxygen protection of nitrogenase in the aerobically nitrogen
fixing, non-heterocystous cyanobacterium Oscillatoria sp. Arch Microbiol 1985;
143: 72–76.
Stal L.J., Krumbein W.E. Temporal separation of nitrogen fixation and photosynthesis in
the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. Arch Microbiol 1987; 149: 76–80.
















































































   219   220   221   222   223