Page 364 - เชื้อเพลิงชีวภาพและชีวเคมีภัณฑ์โดยจุลินทรีย์
P. 364
326
Mora M., Fernández M., Gómez J.M., Cantero D., Lafuente J., Gamisans X., Gabriel D. Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters. Appl Microbiol Biotechnol 2015; 99: 77–87.
Muñoz R., Meier L., Diaz I., Jeison D. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol 2015; 14: 727–759.
Odintsova E.V., Jannasch H.W., Mamone J.A., Langworthy T.A. Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int J Syst Evol Microbiol 1996; 46: 422–428.
O'Flaherty V., Mahony T., O'Kennedy R., Colleran E. Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochem 1998; 33: 555-569.
Oh K.J., Kim D., Lee I-H. Development of effective hydrogen sulphide removing equipment using Thiobacillus sp. IW. Environ Pollut 1998; 99: 87–92.
Okabe S., Odagiri M., Ito T., Satoh H. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol 2007; 73: 971–980.
Omil F., Lens P., Hulshoff Pol L., Lettinga G. Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochem 1996; 31: 699–710.
Omil F., Lens P., Visser A., Hulshoff Pol L., Lettinga G. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Biotechnol Bioeng 1998; 57: 676–685.
Parkin G.F., Lynch N.A., Kuo W.C., Van Keuren, E.L., Bhattacharya S. K. Interaction between sulfate reducers and methanogens fed acetate and propionate. J Water Pollut Control Fed 1990; 62: 780–788.