Page 73 - เชื้อเพลิงชีวภาพและชีวเคมีภัณฑ์โดยจุลินทรีย์
P. 73

35
 Appels L., Baeyens J., Degrève J., Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 2008; 34: 755–781.
Bajpai P. Anaerobic Technology in Pulp and Paper Industry. Springer: Singapore; 2017. p. 99.
Batstone D.J., Keller J., Angelidaki I., Kalyuzhnyi S.V., Pavlostathis S.G., Rozzi A., Sanders W.T.M., Siegrist H., Vavilin V.A. The IWA anaerobic digestion model No 1 (ADM1). Water Sci Technol 2002; 45: 65–73.
Beldman G., Leeuwen M.F., Rombouts F.M., Voragen F.G.J. The cellulase of Trichoderma viride purification, characterization and comparison of all detectable endoglucanases, exoglucanases and beta-glucosidases. Eur J Biochem 1985; 146: 301–308.
Ben Bassat A., Lamed R., Zeikus J.G. Ethanol production by thermophilic bacteria: Metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 1981; 146: 192–199.
Boone D.R., Bryant M.P. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 1980; 40: 626–632.
Bouallagui H., Ben Cheikh R., Marouani L., Hamdi M., Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresour Technol 2003; 86: 85–89.
Boucher O., Friedlingstein P., Collins B., Shine K.P., The indirect global warming potential and global temperature change potential due to methane oxidation. Environ Res 2009; 4: 1–5.
Bryant M.P. Microbial methane production–theoretical aspects. J Anim Sci 1979; 48: 193–201.
Bryant M.P., Campbell L.L., Reddy C.A., Crabill M.R. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 1977; 33: 1162–1169.
























































































   71   72   73   74   75