Page 78 - เชื้อเพลิงชีวภาพและชีวเคมีภัณฑ์โดยจุลินทรีย์
P. 78
40
Kumar R., Wyman C.E. Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 2009; 100: 4203–4213.
Kyoto Encyclopedia of Genes and Genomes (KEGG), KEGG Pathway: Methane Metabolism-Reference Pathway. [Online]. [cited 2018 Jan 11]. Available from: https://www.genome.jp/kegg-bin/show_pathway?map00680
Lashof D.A., Ahuja D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990; 344: 529–531.
Lee J.C., Kim J.H., Chang W.S., Pak D. Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor. J Chem Technol Biotechnol 2012; 87: 844–847.
Li Q., Li L., Rejtar T., Lessner D.J., Karger B.L., Ferry J.G. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 2006; 188: 702–710.
Lyberatos G., Pullammanappallil P.C. Anaerobic digestion in suspended growth bioreactors. In: Wang L.K., Ivanov V., Tay J.H., editors. Environmental Biotechnology, Handbook of Environmental Engineering. Humana Press: Clifton; 2010. p. 395–438.
Ma J., Frear C., Wang Z., Yu L., Zhao Q., Li X., Chen S. A simple methodology for rate- limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 2013; 134: 391–395.
Maeder D.L., Anderson I., Brettin T.S., Bruce D.C., Gilna P., Han C.S., Lapidus A., Metcalf W.W., Saunders E., Tapia R., Sowers K.R. The Methanosarcina barkeri genome: Comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 2006; 188: 7922–7931.
McInerney M.J., Bryant M.P., Hespell R.B., Costerton J.W. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing Bacterium. Appl Environ Microbiol 1981; 41: 1029–1039.