Page 84 - เชื้อเพลิงชีวภาพและชีวเคมีภัณฑ์โดยจุลินทรีย์
P. 84

46
 Westerholm M., Roos S., Schnürer A. Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 2010; 309: 100–104.
Westermann P., Ahring B.K. Dynamics of methane production, sulfate reduction, and denitrification in a permanently waterlogged alder swamp. Appl Environ Microbiol 1987; 53: 2554–2559.
Widdel F. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder A.J.B., editor. Biology of Anaerobic Microorganisms. John Wiley & Sons, Inc.
New York. 1988. p. 469–585.
Wiegant W.M., Claassen J.A., Lettinga G., Thermophilic anaerobic digestion of high strength wastewaters. Biotechnol Bioeng 1985; 27: 1374–1381.
Zhang C., Su H., Baeyens J., Tan T. Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 2014; 38: 383–392.
Zhang R., El-Mashad H.M., Hartman K., Wang F., Liu G., Choate C., Gamble P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 2007; 98: 929–935.
Zhu J., Zheng H., Ai G., Zhang G., Liu D., Liu X., Dong X. The genome characteristics and predicted function of methyl-group oxidation pathway in the obligate aceticlastic methanogens, Methanosaeta spp. PLoS One 2012; 7: e36756, 1–9.
Zhuang G.C., Heuer V.B., Lazar C.S., Goldhammer T., Wendt J., Samarkin V.A., Elvert M., Teske A.P., Joye S.B., Hinrichs K.U. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochim Cosmochim Acta 2018; 224: 171–186.
Zinder S.H., Sowers K.R., Ferry J.G. NOTES: Methanosarcina thermophila sp. nov.,
a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bacteriol 1985; 35: 522–523.























































































   82   83   84   85   86