Page 115 - Buku Paket Kelas 10 Matematika
P. 115
Rangkuman
Berdasarkan uraian materi pada Bab 3 ini, ada beberapa kesimpulan yang dapat dinyatakan sebagai pengetahuan awal untuk mendalami dan melanjutkan bahasan berikutnya. Beberapa kesimpulan disajikan sebagai berikut.
1. Jika f suatu fungsi dengan daerah asal Df dan g suatu fungsi dengan daerah asal Dg, maka pada operasi aljabar penjumlahan, pengurangan, perkalian, dan pembagian dinyatakan sebagai berikut.
(1) Jumlah f dan g ditulis f + g didefinisikan sebagai (f + g)(x) = f(x) + g(x) dengan daerah asal Df + g = Df∩Dg.
(2) Selisih f dan g ditulis f – g didefinisikan sebagai (f – g)(x) = f(x) – g(x) dengan daerah asal Df – g = Df∩Dg.
(3) Perkalian f dan g ditulis f × g didefinisikan sebagai (f × g)(x) = f(x) × g(x) dengan daerah asal Df × g = Df∩Dg.
(4) Pembagian f dan g ditulis f didefinisikan sebagai f (x)= f(x) g g(x)
g dengan daerah asal D f = Df∩Dg – {x|g(x) = 0}.
g
2. Jika f dan g fungsi dan Rf∩Dg ≠ Ø, maka terdapat suatu fungsi h dari himpunan bagian Df ke himpunan bagian Rg yang disebut fungsi komposisi f dan g (ditulis gf) yang ditentukan dengan
h(x) = (gf)(x) = g(f(x))
3. Sifat komutatif pada operasi fungsi komposisi tidak memenuhi, (gf) ≠ (fg).
4. Diketahui f, g, dan h suatu fungsi. Jika Rh∩Dg ≠ Ø; Ø; Rgh∩Df ≠ Ø, Rg∩Df ≠ Ø; Rh∩Dfg ≠ Ø, maka pada operasi komposisi fungsi berlaku sifat asosiatif, yaitu f(gh) = (fg)h.
115
Matematika