Page 14 - MODULE 1 Q1MATH8
P. 14

 Step 2: Finding the Factors of 15d2e4 10d3e6 f
     Steps
Solution
           Given Expression:
a. b. c.
d. Dividethenumericalcoefficientof
the 1st term of the given polynomial by the numerical coefficient of the CMF.
e. Subtracttheexponentofthe same variables from the given polynomial by the exponent of the same variables of the CMF.
f. Quotient of the First Term

g. h.
i. Divide the numerical coefficient of
the 2nd term of the given polynomial by the numerical coefficient of the CMF.
j. Subtract the exponent of the same variables from the given polynomial by the exponent of the same variables of the CMF.
k. Quotient of the 2nd Term
l. Bring together the quotient of both
terms.
m. n.
15d2e4 10d3e6 f

  

 3(1)(1) = 3
 
 10÷5=2

f*
 
 5d2e4 (3 – 2de2f)
 5d2e4 (3 – 2de2f)
 First Term
  Common Monomial Factor
  d2-2 =d0 =1
 e4-4 =e0 =1
    Do the same process for the
 second term of the polynomial.
2nd Term
 10d3e6f
 5d2e4
  Common Monomial Factor
 d3-2 = d*
 e6-4 = e2
   Copy the operation symbol of the
polynomials
Factored form of
15d2e4 10d3e6 f
15d2e4
5d2e4
15÷5=3
*exponent of variable is 1, it is not
 necessary to be written
 2de2f
 3 – 2de2f
                5













































   12   13   14   15   16