Page 61 - Covid 2021 June 2021
P. 61
infection contributes to disease-associated mortality. While cancer remains the second among the diseases associated with mortality worldwide, cancer patients' mortality rates are often observed upon extended periods after illness, usually ranging from months to years. However, the mortality rates associated with COVID-19 disease are robust. The cytokine storm induced by SARS-CoV-2 infection appeared to be responsible for the multi-organ failure and increased mortality rates. Since both cancer and COVID-19 disease share overlapping inflammatory mechanisms, repurposing some anticancer and anti-inflammatory drugs for COVID-19 may lower mortality rates. Here, they review some of these inflammatory mechanisms and propose some potential chemotherapeutic agents to intervene in them and also discuss the repercussions of anti-inflammatory drugs such as glucocorticoids and hydroxychloroquine with zinc or antiviral drugs such as ivermectin and remdesivir against SARS-CoV-2-induced cytokine storm. In this review, the researchers emphasise on various possibilities to reduce SARS-CoV-2-induced cytokine storm.
Contact Info: i.ser.bmcc@rssa.in
Website link:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959277/ https://www.ccmb.res.in/Research/Research-Publications
HARIOM, an optical detection method for COVID-19
In order to define public health policies, simple, inexpensive, and robust detection methods for SARS-CoV-2 are vital for mass-testing in resource-limited settings. The current choice of molecular methods for identification of SARS-CoV-2 infection includes nucleic acid-based testing (NAT) for viral genetic material and antigen-based testing for viral protein identification. Host exposure is detected using antibody detection assays. While NATs require sophisticated instrument and trained manpower, antigen tests are plagued by their low sensitivity and specificity. Thus, a test offering sensitive detection for presence of infection as a colorimetric readout holds promise to enable mass testing in resource-constrained environments by minimally trained personnel.
The novel HRPZyme Assisted Recognition of Infection by Optical Measurement (HARIOM) assay combines specificity of NATs with sensitivity of enzymatic assays resulting in enhanced signal-to-noise ratios in an easily interpretable colorimetric readout. Using this assay, the researchers could detect up to 102 copies of synthetic viral RNA spiked in saliva as a detection matrix. Validating their assay on suspected human subjects, they found concordance with PCR- based readouts with visible colorimetric distinction between positive and negative samples in less than an hour. This assay holds the potential to aid in mass screening to detect SARS-CoV-2 infection by facilitating colorimetric detection with minimal resources and trained personnel.
Contact Info: director@igib.res.in; ankurk.icgeb@gmail.com
Website link:
https://www.sciencedirect.com/science/article/pii/S0956566321003171
Computational analysis and phylogenetic clustering of SARS-CoV-2
genomes
Following the rapid human-to-human transmission of the infection, institutes around the world have made efforts to generate genome sequence data for the virus. With thousands of genome sequences for SARS-CoV-2 now available in the public domain, it is possible to analyze the
VIGYAN PRASAR 58