Page 835 - Mechatronics with Experiments
P. 835

®
                                                               ®
                                                MATLAB , SIMULINK , STATEFLOW, AND AUTO-CODE GENERATION  821
                             >>    B   =  ones(6,4) ;
                                          %   all elements of B    matrix, 6x4, are     ones.
                             >>    Y   =  eye(n)    ;
                                          %    Returns (creates) an identity matrix: nxn

                             >>    Y   =  eye(m,n) ;
                                          %    ............... mxn
                                  Matrices can be concatenated to build larger size matrices or elements can be deleted
                             to build smaller matrices,
                             >> B = [ A,     A+2 ;   A+2,   A ] ;
                             >>
                             >> A(:,2)=[]    ;    % Delete second    column of matrix A
                             >>
                             >> C = B(2:4, 3:6) ; % Assign sub-set of B to C: rows 2,3,4
                                                       and colums 3, 4, 5, 6 of
                             >>                      % B are assigned to C
                             >>
                             >> v=linspace(0,10,6)      %  Create an array v: start at 0,
                                                           end at 10,   6 numbers evenly spaced

                               v =
                                 0      2     4      6      8     10

                             >> v=logspace(0,3,4)     ; % First two arguments are powers of 10,
                                                        % third    argument is the number of
                                                           elements
                                                        % in the range, in Logarithmic scale.
                               v =
                                        1           10          100          1000
                                                                               ®
                                  Various matrix properties are calculated using MATLAB library functions, such as
                             determinant, eigenvalues of a matrix, rank of a matrix, inverse of a matrix

                             >>   Value   =   det(A)    ;        %   Determinant of matrix A,
                             >>   Lambda =    eig(A)    ;        %   Eigenvalues of matrix     A.
                             >>    n      =   rank(A)   ;        %   Rank of matrix A
                             >>    Ainv   =   inv(A)    ;        %   inverse of A:    Aˆ-1
                                                                                       ®
                                  Some commonly used built-in mathematical funtions in MATLAB are as follows:
                             >> y = sqrt(x) ;     % Square root of x assigned to y
                             >> y = exp(x) ;      % Exponential function
                             >> y = abs(x) ;      % Absolute value of x assigned to y
                             >> y = log(x) ;      %  y = ln(x).    Log(x) is logarithmic function
                                                     with base ’e’.
                             >> y = log10(x) ;      %  y = log(x).    Log10(x) is logarithmic
                                                       function with base ’10’.
                             >>
                             >> x = 5.4    ;
                             >> y = round(x) ; % Round to nearest integer:        y = 5
                             >> y = fix(x) ;      % Round to integer towards zero:      y = 5
                             >> y = ceil(x) ;     % Round to integer towards infinity :
                                                    y = 6
                             >> y = floor(x) ; % Round to integer towards negative infinity:
                                                    y = 5
   830   831   832   833   834   835   836   837   838   839   840