Page 3 - EXERCISE 7.3
P. 3

MAHEISHANG                                                                                                                CLASS IX BOSEM
               BOOKS AND TUTORIAL



               Q5. Prove that in a quadrilateral, the sum of all the sides is greater than the sum of its diagonals.

                soln:

                 we know , sum of two sides of a triangle is greater than the third side
                to prove :-  AB+BC+CD+DA>AC+BD
                proof:
                   
                In  ABC
                AB BC     AC    eqn 1
                   
                   
                In  ADC
                 DA+CD>AC       eqn 2
                   
                In  BAD
                 AB+DA>BD      eqn 3
                In BCD
                 BC+CD>BD       eqn 4
                adding eqn 1,eqn 2,eqn 3 and eqn 4,we get

                  AB+BC+DA+CD+AB+DA+BC+CD>AC+AC+BD+BD
                  2AB  2BC   2CD   2DA   2AC  2BD
                              
                                   
                         
                    2 AB BC CD DA                 
                                          2 AC BD
                            
                  AB BC CD DA          AC BD    h/p
                      
                                 
                                            
               Q6.In  PQR , S is any point on the side QR .Show that  PQ QR PR   2PS .
                                                                          
                                                                     
                     
                soln:
                         
                given : In  PQR ,S is on side QR
                                   
                to prove:-  PQ QR PR      2PS
                              
                proof  :
                   
                In  PQS
                 PQ+QS>PS      eqn 1
                   
                In  PRS
                 SR+PR>PS     eqn 2
                adding eqn 1 and eqn 2,we get
                   PQ+QS+SR+PR      PS   PS
                                                  
                            
                  PQ QR PR       2PS     QS+SR QR    
                      







               https://www.maheishang.co.in                                                                                   RAJKUMAR LENIN SINGH
   1   2   3