Page 76 - BUKU MATEMATIKA DASAR - KALKULUS DIFERENSIAL
P. 76

5. lim f  (x )   g (x ))  lim f  (x )   lim g (x )
                           (
                       x c               x c       x c
                           (
                   6. lim f  (x ) g (x ))  lim f (x )  lim g (x )
                       x c              x c     x a
                           f (x )  lim f  (x )                0
                   7. lim         x c   , asalkan  lim g (x ) 
                       x c  g (x )  lim g (x )     x c
                                  x c
                                             n
                                n
                   8. lim ( f ( x))  lim  f ( x) 
                       x c          x c
                   Teorema di atas, dapat diaplikasikan dalam banyak hal pada

                   penyelesaian soal-soal tentang limit.



                   Contoh :


                   1.  Jika  lim f  (x )   3 dan lim g (x )    1
                              x a             x a
                       Tentukan :


                        a. lim   f  2 (x )  g  2 (x )  ...
                            x a
                                        
                                                              
                            lim   f  2 (x ) g  2 (x )   lim { f  2 (x ) g 2 (x )
                             x a                   x a

                               lim f  2 (x )   lim g 2 (x )
                                x a        x a


                               lim f  (x )  lim g  (x   )
                                         2
                                                     2
                                 x a        x a
                               3   (  ) 1
                                        2
                                 2
                               10


                                                                   
                   b.  lim  3  f ( x)  xg )(   3   lim  3  f ( x)  lim  g( x)     3
                       x a                   x a          x a   
                        lim  3  f  (x )  { lim g (x )  lim  } 3
                         x a       x a       x  3
                         3  lim f  (x )  { lim g (x )  lim  } 3
                           x a     x a       x a
                         3  ( 3  1  ) 3

                        2 3  3

                                           2 f  (x )  3g (x )  lim 2 f  (x )  3g (x   )
                                    c.  lim                 x 2
                                        x a  f  (x )   g (x )  lim  (xf  )   g (x   )
                                                             x 2
                                  lim 2 f  (x )  lim 3g (x )
                                  x 2       x 2
                                   lim f  (x )   lim g (x )
                                    x a      x a
                                  2 lim f (x )   3 lim g (x
                                                       )
                                  x 2         x 2
                                    lim f  (x )   lim g (x )
                                    x a       x a
                                      ) 3 ( 2    ( 3   ) 1
                                
                                    3   (  ) 1
                                  9
                                
                                  2
   71   72   73   74   75   76   77   78   79   80   81