Page 76 - BUKU MATEMATIKA DASAR - KALKULUS DIFERENSIAL
P. 76
5. lim f (x ) g (x )) lim f (x ) lim g (x )
(
x c x c x c
(
6. lim f (x ) g (x )) lim f (x ) lim g (x )
x c x c x a
f (x ) lim f (x ) 0
7. lim x c , asalkan lim g (x )
x c g (x ) lim g (x ) x c
x c
n
n
8. lim ( f ( x)) lim f ( x)
x c x c
Teorema di atas, dapat diaplikasikan dalam banyak hal pada
penyelesaian soal-soal tentang limit.
Contoh :
1. Jika lim f (x ) 3 dan lim g (x ) 1
x a x a
Tentukan :
a. lim f 2 (x ) g 2 (x ) ...
x a
lim f 2 (x ) g 2 (x ) lim { f 2 (x ) g 2 (x )
x a x a
lim f 2 (x ) lim g 2 (x )
x a x a
lim f (x ) lim g (x )
2
2
x a x a
3 ( ) 1
2
2
10
b. lim 3 f ( x) xg )( 3 lim 3 f ( x) lim g( x) 3
x a x a x a
lim 3 f (x ) { lim g (x ) lim } 3
x a x a x 3
3 lim f (x ) { lim g (x ) lim } 3
x a x a x a
3 ( 3 1 ) 3
2 3 3
2 f (x ) 3g (x ) lim 2 f (x ) 3g (x )
c. lim x 2
x a f (x ) g (x ) lim (xf ) g (x )
x 2
lim 2 f (x ) lim 3g (x )
x 2 x 2
lim f (x ) lim g (x )
x a x a
2 lim f (x ) 3 lim g (x
)
x 2 x 2
lim f (x ) lim g (x )
x a x a
) 3 ( 2 ( 3 ) 1
3 ( ) 1
9
2

