Page 11 - MAKALAH YOHANESN DAPUTRA KOMPUTER PROGRAM
P. 11

Selain itu kita juga dapat menghitung
            Luas sisi tabung tanpa tutup
                  – r + 2art rr +21)


             • Volume Tabung











            Perhatikan gambar diatas prisma tegak beraturan segi n. Jika n bertambah semakin besar,
            maka akan mendapatkan prisma yang sisi alas dan atasnya tidak dapat dibedakan dengan
            lingkaran dan berubah menjadi tabung.

            Sehingga rumus volume limas tegak yaitu Luas alas x tinggi juga berlaku untuk tahung
            Karena alas tabung berbentuk lingkaran dan juga luas lingkaran untuk jari-jari r adalah ar.
            Maka rumus volume tabung dapat dinyatakan dalam bentuk:

             V – luas alas x tinggi
            =ar x t
            -πr²t
             Π (phi) adalah suatu bilangan tetap yang merupakan nilai pembanding antara keliling
            lingkaran dengan garis tengah (diameter) lingkaran. Nilai phi mendekati 3.14 atau ada juga
            yang menyatakan dengan 22/7.
            jadi volume tabung yang jari-jari lingkaran atasnya dinyatakan dengan r dan tingginya
            dinyatakan dengan t adalah
             v- 3.14 x r² x t
            atau  V = 22/7 x r² x L
   6   7   8   9   10   11   12   13   14   15   16