Page 4 - FUNGSI PEMBANGKIT EKSPONENSIAL (FPE)
P. 4

Pembahasan Soal 1




                                          0        1        2               
                Karena       =       0  0!  +    1  1!  +    2  2!  + ⋯ +          !  dan        = (0,0,1,1,1, … ), maka jika

                kita subtitusikan:


                                  0       0                                         3       3     3
                   = 0 →      0    = 0     = 0.1 = 0                 = 3 →     3    = 1.    =
                                0!      0!                                       3!      3!    3!

                                  1       1       1                                 4        4     4
                   = 1 →     1  1!  = 0  1!  = 0.  1  = 0            = 4 →     4  4!  = 1.  4!  =  4!                                       4


                                  2       2     2
                   = 2 →     2  2!  = 1.  2!  =  2!




                Sehingga diperoleh:


                                                   2     3     4            2     3      4
                                  = 0 + 0 +        +     +      + ⋯ =        +     +     + ⋯
                                                2!    3!    4!           2!     3!    4!
   1   2   3   4   5   6   7   8   9