Page 106 - Bangladesh_classwiz_BOOK2018_rev_Neat
P. 106

9.5 Solver e¨envi K‡i w·KvYwgwZK mgxKi‡Yi mgvavb wbY©q


                Qr e¨envi K‡i ‡Kv‡bv w·KvYwgwZK mgxKiY‡K K¨vjKz‡jU‡i UvBc Ki‡Z n‡e| Gici qr
               (Sovle)  Pvc‡j  K¨vjKz‡jUi      Gi  GKwU  gvb  PvB‡e|  †h‡Kv‡bv  GKwU  gvb  cÖ‡ek  Kwi‡q  =evUb  Pvc‡j
               mgxKi‡Yi mgvavb K¨vjKz‡jU‡i cÖ`wk©Z n‡e|

                                             −          1−√3
               D`vniY¯^iƒc, aiv hvK,           =       mgxKi‡Y    Gi gvb †ei Ki‡Z n‡e| Gi Rb¨ K¨vjKz‡jU‡i
                                             +          1+√3
               mgxKiYwU wb‡Pi cÖ_g w¯Œ‡bi g‡Zv UvBc Kiv‡Z n‡e| Gici qr evUb Pvc‡j K¨vjKz‡jUi Gi Rb¨ GKwU
               gvb PvB‡e| Gi Rb¨ 45 cÖ‡ek Kwi‡q = evUb Pvc‡j wb‡Pi Z…Zxq w¯Œ‡bi g‡Zv djvdj cÖ`wk©Z n‡e|











               9.6 wecixZ w·KvYwgwZK dvskb

                            dvskb‡K          =    Øviv msÁvwqZ Kiv n‡j,        −1    =     A_©vr          †K w·KvYwgwZK dvskb
                                                                                                 2
                                                                            2
               ejv n‡j        −1    †K wecixZ w·KvYwgwZK dvskb ejv nq| hw`I           Gi cwie‡Z© (        )  e¨envi Kiv
                                                                           −1
                                                 −1
                                                                                               −1
               hvq wKš‘        −1    Gi cwie‡Z© (        )  ev   1   ‡jLv hv‡e bv|          ,         −1    I           Gi cwie‡Z©
                                                              
                                 ′
                                              ′
               h_vµ‡g ′                , ′                 ,′               ′ BZ¨vw` e¨envi Kiv hvq|
               wecixZ w·KvYwgwZK dvsk‡bi ÿz`ªZg msL¨vm~PK gvb‡K (abvZ¥K ev FYvZ¥K) Gi g~L¨gvb ejv nq| myZivs
                                                                                
                       1
                                                                        
                                  −1
                   −1
                       ( )  Ges tan  (−1) dvsk‡bi g~L¨gvb n‡jv h_vµ‡g   Ges − . hLb ‡Kv‡bv wecixZ w·KvYwgwZK
                       2                                              6       4
               dvsk‡bi Rb¨ `yBwU gvb nq (GKwU ÿz`ªZg msL¨vm~PK I FYvZ¥K Ges AciwU ÿz`ªZg msL¨vm~PK I abvZ¥K), ZLb
               abvZ¥K gvb‡K H dvsk‡bi g~L¨gvb aiv nq|
                                                                                         −1
                                                                                                          −1
                                                                                                −1
               wecixZ w·KvYwgwZK dvsk‡bi g~L¨gvb †ei Kivi Rb¨ ClassWiz K¨vjKz‡jU‡i        ,          I       
               i‡q‡Q †m¸‡jv h_vµ‡g qj, qk , ql †P‡c cvIqv hvq| Avi                           −1   ,         −1    I
                                                                 1
                                                                              1
                                                    1
                       −1    dvsk‡bi Rb¨ h_vµ‡g         −1  ( ) ,         −1 ( ) I         −1  ( ) e¨envi Ki‡Z n‡e|
                                                                                
               D`vniY¯^iƒc aiv hvK,          = −1 †hLv‡b    <    < 2  .     Gi gvb †ei Kivi Rb¨ wecixZ w·KvYwgwZK
               dvskb e¨envi K‡iI Kiv hvq| Avevi Solve e¨envi K‡iI Kiv hvq|
               wecixZ w·KvYwgwZK dvskb e¨envi K‡i    Gi gvb †ei Kivi Rb¨ mgxKiYwUi Abyiƒc mgxKiY wb‡Pi g‡Zv K‡i
               †ei Ki‡Z n‡e|

                                                                 = −1
                                                                    1
                                              −1
                                    ∴    = cot (−1),=         −1  (   ) =         −1  (−1)
                                                                   −1
               Gici CalssWiz K¨vjKz‡jU‡i ql evUb e¨envi K‡i    Gi gvb cvIqv hvq hv wb‡P †`Lv‡bv n‡jv|







                                                            101
   101   102   103   104   105   106   107   108   109   110   111