Page 31 - Bangladesh_classwiz_BOOK2018_rev_Neat
P. 31

wb‡P cÖ`wk©Z wP‡Îi g‡Zv K¨vjKy‡jUi A Ges B Gi gvb PvB‡e Ges ivwkwUi gvb ‡ei Ki‡e| cÖ‡Z¨KwU gvb cÖ‡ek

               Kiv‡bvi ci = Kx Pvc‡Z n‡e|








               myZivs, GKwU mg‡KvYx wÎfy‡Ri `yBwU mwbœwnZ evû 5 Ges 12 n‡j Gi AwZfzR n‡e 13| A I B Gi Av‡iv gvb
               emv‡bvi Rb¨ cybivq = A_ev r evUb Pvc‡Z n‡e|



               2.2 ivwki Zyjbv


               CALC myweav K‡qKwU ivwki Zyjbv Kivi Rb¨ e¨envi Kiv ‡h‡Z cv‡i| GwU Kivi Rb¨ ivwk¸‡jvi gv‡S ‡Kvjb
               (:) (Qy) emv‡Z nq| Gici r evUb ‡P‡c PjK¸‡jvi gvb cÖ‡ek Kiv‡Z nq| µgvš‡q = evUb
                                                                                               ^
                                                                                            2
               Pvc‡j ivwk¸‡jvi gvb GK GK K‡i ‡ei n‡e| wb‡Pi D`vni‡Y `yBwU ivwk   (   + 1) Ges    + 1Gi gvb
               Zyjbv Kiv n‡q‡Q|









                  Gi GKwU gvb cÖ‡ek Kiv‡bvi ci = evUb Pvc‡j    Gi H gv‡bi Rb¨ cÖwZwU ivwki gvb ch©vqµ‡g ‡ei n‡e|
               wØZxqwUi ci = evUb cybivq ‡P‡c   Gi bZyb gvb cÖ‡ek Kiv‡bv hv‡e|

                                                                                2
               GB  fv‡e  ‡`Lv  hvq  ‡h,      Gi  wewfbœ  gv‡bi  Rb¨    (   + 1)Ges     + 1Gi  gvb  wfbœ  iKg  n‡e|
               ïaygvÎ    = 1Gi Rb¨ `yBwU dvsk‡bi gvb GKB nq|



               2.3 Table mode Gi e¨envi

               hLb GKwU dvsk‡bi gvb wewfbœ we›`y‡Z ‡ei Ki‡Z nq, ZLb gv‡bi ZvwjKv ‰Zwi Kiv me ‡_‡K fv‡jv c×wZ n‡Z
               cv‡i| GwU Kivi Rb¨ Table mode e¨envi Ki‡Z n‡e|w9 ‡P‡c    Gi GKwU dvskb    cÖ‡ek Kiv‡bv
               hvq|

                                                                               3
                                                                           
               D`vniY wn‡m‡e ejv hvq,    = 0 Ges    = 2 Gi g‡a¨   (  ) = 2 −    Gi gvb ‡Kv_vq k~b¨ Zv wbY©q Kivi
               Rb¨ A‡bK¸‡jv we›`y‡Z gvb ‡ei K‡i dvskbwUi ‡Kv‡bv gvb k~‡b¨i KvQvKvwQ Zv ‡`Lv myweavRbK| GwU Kivi Rb¨
                                            3
                                        
               mgZzj¨ dvskb   (  ) = 2 −     wb‡Pi g‡Zv K‡i ZvwjKv fy³ Kiv hvq (GLv‡b ïaygvÎ    dvskbwU e¨envi Kiv
               n‡q‡Q)|







                   
               2  cÖ‡ek Kiv‡bvi ci m~PK ‡_‡K ‡ei nIqvi Rb¨ $evUb Pvcvi K_v g‡b ivLv‡Z n‡e|

                                                             26
   26   27   28   29   30   31   32   33   34   35   36