Page 49 - Bangladesh_classwiz_BOOK2018_rev_Neat
P. 49
3.2 Solve e¨envi K‡i gvb wbY©q
GKwU GK PjK wewkó ivwki gvb †`Iqv _vK‡j †mwU e¨envi K‡i D³ PjKwewkó Ab¨ GKwU ivwki gvb Solve
dvskb e¨envi K‡i mn‡RB †ei Kiv hvq| †mRb¨ Qr(=) I qr(Solve) e¨envi K‡i D³ Pj‡Ki
gvb †ei Ki‡Z nq| Gici †g‡gvwi‡Z GB gvb msiÿY K‡i Ab¨ ivwkwU K¨vjKz‡jUi cÖ‡ek Kwi‡q = evUb
Pvc‡j ivwkwUi gvb cvIqv hv‡e| D‡jøL¨ †h, ivwk¸‡jvi PjK wn‡m‡e K¨vjKz‡jU‡i e¨envi KivB †kÖq| KviY
Gi Rb¨ ClassWiz G Avjv`v Kx i‡q‡Q|
1 4 1
D`vniY¯^iƒc, aiv hvK GKwU ivwk − = 4 Gi Rb¨ + Gi gvb †ei Ki‡Z n‡e| †mRb¨ cÖ_‡g
4
1
− = 4 ivwkwU K¨vjKz‡jU‡i cÖ‡ek Kiv‡Z n‡e| Gici qr Pvc‡j wb‡Pi w¯Œ‡bi g‡Zv K¨vjKz‡jUiwU
Gi Rb¨ GKwU cÖv_wgK Abygvb PvB‡e| GLv‡b 1 cÖ‡ek Kwi‡q = Pvc‡j wØZxq w¯Œ‡bi g‡Zv Gi gvb
cÖ`wk©Z n‡e| Gici M evUb Pvcvi ci J I [ Pvc‡j djvdjwU †g‡gvwi‡Z msiwÿZ n‡e| GLb wØZxq
ivwkwU‡K cÖ‡ek Kwi‡q = Pvc‡j K¨vjKz‡jUi djvdj cÖ`k©b Ki‡e| G‡ÿ‡Î djvdj 322.
3.3 Drcv`‡K we‡kølY
exRMvwYwZK ivwki Drcv`K¸‡jv GK ev GKvwaK c` wewkó n‡q _v‡K| ‡Kv‡bv exRMvwYwZK ivwk‡K Drcv`‡K
we‡kølY Kivi Rb¨ D³ ivwk‡K `yB ev Z‡ZvwaK ivwki ¸Ydj iƒ‡c cÖKvk Ki‡Z nq| hw`I GwU ClassWiz G
mivmwi Kiv hvq bv, wKš‘ GKwU we‡kl †KŠkj Aej¤^b K‡i Drcv`K ‡ei Kiv hvq| †mRb¨ wz(A) †P‡c
Equation/Function mode †_‡K 2 †P‡c Polynomial wbe©vPb Ki‡Z nq| Gici ivwkwUi m‡e©v”P NvZ
Abyhvqx 2, 3 A_ev 4 wbe©vPb Ki‡Z nq| cÖvß mgvavb A_©vr Gi †h gvb¸‡jv cvIqv hv‡e †mB gvb¸‡jv cÖ‡Z¨K‡K
†_‡K we‡qvM K‡i ¸Y AvKv‡i wjL‡Z n‡e|
2
− 2 − 35 ‡K Drcv`‡K we‡kølY Kivi Rb¨ Dc‡ii eY©bvi g‡Zv K‡i NvZ 2 wbe©vPb Ki‡Z n‡e| Gici
ivwkwUi mnM¸‡jv 1, −5 I 6 K¨vjKz‡jU‡i cÖ‡ek Kwi‡q = Pvc‡Z _vK‡j I Gi gvb cvIqv hv‡e|
1
2
44