Page 58 - Bangladesh_classwiz_BOOK2018_rev_Neat
P. 58

                    e¨envi K‡i Av‡iKwU c×wZ‡Z KvQvKvwQ mgvavb cvIqv hvq| ‡mRb¨ evi evi e¨ewai gvb cwieZ©b

               bv K‡i mivmwi Kx‡evW© e¨envi K‡i    Kjv‡g mgvav‡bi m¤¢ve¨ gvb¸‡jv cÖ‡ek Kiv‡Z nq| = evUb Pvc‡j
               cÖ‡Z¨Kevi   (  ) Gi gvb cvIqv hvq| D`vniY¯^iƒc,    = 0.6 I    = 0.65 wb‡Pi `yBwU w¯Œ‡b ‡`Lv‡bv n‡jv|








                 (  ) Gi gvb k~‡b¨i KvQvKvwQ bv hvIqv ch©šÍ    Gi gvb µgvMZ cwieZ©b Ki‡Z n‡e|

                                             2
                                     3
                  = 0.653 Gi Rb¨     − 3   + 1 Gi gvb k~‡b¨i KZUv KvQvKvwQ Zv  Rvbvi gva¨‡g  cÖvß gvbwU mwVK
               mgvav‡bi KZUv KvQvKvwQ Zv Rvbv hvq| GwU Kivi Rb¨ GKwU fv‡jv c×wZ n‡”Q Calc dvsk‡bi e¨envi| GRb¨
               Calulate mode G wM‡q ivwkwU wb‡Pi w¯Œ‡bi g‡Zv UvBc K‡i r evUb ‡P‡c    = 0.653 cÖ‡ek Kiv‡Z n‡e|
               Gici = evUb Pvc‡j gvbwU cÖ`wk©Z n‡e|









                  = 0.653, Gi Rb¨ ivwkwUi gvb −0.000781923 hv 0 Gi Lye KvQvKvwQ| ZvB GB gvbwU mgxKi‡bi
               mgvav‡bi Lye wbKUeZ©x| Gici, = evUb ‡P‡c Ab¨ gv‡bi Rb¨ I GKB c×wZ‡Z cix¶v Kiv hvq|     =

               0.6527 Gi Rb¨ gvbwU mgvav‡bi Av‡iv wbKUeZ©x n‡e| (C evUb Pvc‡j ivwkwU wWwjU n‡q hv‡e|)

               `ªóe¨- GB mgxKi‡Yi Av‡iv `yBwU mgvavb Av‡Q hv GKB c×wZ Aej¤^b K‡i ‡ei Kiv hv‡e|



               4.2 Solver e¨envi K‡i mgvavb


               GK PjK m¤^wjZ (mvaviYZ   ) mgxKi‡Yi mgvavb wbY©‡qi Rb¨ K¨vjKy‡jU‡i SOLVE evUb e¨envi Kiv nq|
                                      2
               aiv hvK, GKwU mgxKiY    − 5   + 6 = 0 K¨vjKy‡jU‡i Calulate mode e¨envi K‡i wb‡Pi wP‡Îi g‡Zv
               mgxKiYwU UvBc Ki‡Z n‡e| G‡¶‡Î = wP‡ýi Rb¨ cÖ‡ek Kiv‡bvi Rb¨ Qr (mvaviY = evUb e¨envi
               Kiv hv‡e bv) e¨envi Ki‡Z n‡e| mgxKiY cÖ‡ek Kiv‡bv c‡i = evUb Pvcv hv‡e bv|










               GB mgxKiYwU mgvavb Kivi c×wZ ïiæ Kivi Rb¨ qr evUb e¨envi K‡i Solve command w`‡Z n‡e|
               K¨vjKy‡jU‡i Dc‡ii 2q w¯Œ‡bi g‡Zv    Gi Rb¨ GKwU cÖv_wgK Abygvb PvB‡e| w¯Œ‡bi wb‡P    Gi gvb G‡¶‡Î 5,
               hv we‡eP¨ bq, GwU K¨vjKy‡jU‡i e¨eüZ    Gi me©‡kl gvb|


               mgvav‡bi KvQvKvwQ cQ›` g‡Zv GKwU AbywgZ gvb wb‡q = evUb Pvc‡Z n‡e| GB mgxKi‡Yi ‡¶‡Î    = 1
               Ges    = 5 Gi KvQvKvwQ ‡Kv_vI mgvavb i‡q‡Q|    = 1 cÖ‡ek Kwi‡q = evUb Pvc‡j K¨vjKy‡jUi cÖ_g
               mgvavb cÖ`k©b K‡i, hv wb‡Pi evg cv‡ki w¯Œ‡b ‡`Lv‡bv n‡q‡Q| Av‡iKwU mgvav‡bi Rb¨ cybivq = evUb Pvc‡Z
               n‡e|

                                                             53
   53   54   55   56   57   58   59   60   61   62   63