Page 75 - Bangladesh_classwiz_BOOK2018_rev_Neat
P. 75

2
               Gici     Gi mnM −1,    Gi mnM 0 Ges aªæeK A_©vr    Gi gvb 4 cÖ‡ek Kwi‡q = evUb Pvc‡j wb‡Pi wØZxq
               w¯Œ‡bi g‡Zv djvdj cvIqv hv‡e|









               djvd‡j cÖ`wk©Z    I    g~j AmgZvi mnM bq eis mgvav‡bi AvK…wZ †evSv‡bvi Rb¨ cÖ`k©b Ki‡Q|
                                     2
               Avevi GKwU Amg‡Zvv    + 2   − 15 ≤ 0 †bIqv n‡jv| bZzb Amg‡Zvv cÖ‡ek Kiv‡bvi Rb¨ T †P‡c
               cybivq wØNvZ wbe©vPb Ki‡j c~‡e©i g‡Zv Pvi ai‡bi AmgZv cÖ`k©b Ki‡e|







               Gici D³ mgm¨vi Rb¨ 4 †P‡c 4 bs Av`k© iƒc wbe©vPb Ki‡Z n‡e|







                 2
                   I    Gi mnM Ges aªæeK A_©vr    = 1,    = 2,    = −15 cÖ‡ek Kwi‡q = Pvc‡j wb‡Pi w¯Œ‡bi g‡Zv
               djvdj cÖ`wk©Z n‡e|







               GLv‡b    ≤    ≤    ïaygvÎ mgvav‡bi AvK…wZ wb‡`©k K‡i|



               6.2 wÎNvZhy³ AmgZv


               wÎNvZhy³ AmgZvi mgvavb Kivi Rb¨ wx Pvcvi ci 3 †P‡c wÎNvZ Polynomial wbe©vPb Ki‡Z n‡e|
               d‡j wb‡Pi wØZxq w¯Œ‡bi g‡Zv GKwU w¯Œb cÖ`wk©Z n‡e|








               Gici cÖ‡qvRb Abymv‡i AmgZv wbe©vPb K‡i Gi mgvavb Kiv hvq|


                             2
                       3
               ‡hgb,    −    − 9   + 9 ≥ 0 Amg‡ZvvwUi mgvavb Kivi Rb¨ 3  Pvc‡Z n‡e| Gici    = 1,    =
               −1,    =  −9,   = 9 cÖ‡ek Kwi‡q = Pvc‡j wb‡Pi wØZxq w¯Œ‡bi g‡Zv djvdj cÖ`wk©Z n‡e|







                                                             70
   70   71   72   73   74   75   76   77   78   79   80