Page 75 - Bangladesh_classwiz_BOOK2018_rev_Neat
P. 75
2
Gici Gi mnM −1, Gi mnM 0 Ges aªæeK A_©vr Gi gvb 4 cÖ‡ek Kwi‡q = evUb Pvc‡j wb‡Pi wØZxq
w¯Œ‡bi g‡Zv djvdj cvIqv hv‡e|
djvd‡j cÖ`wk©Z I g~j AmgZvi mnM bq eis mgvav‡bi AvK…wZ †evSv‡bvi Rb¨ cÖ`k©b Ki‡Q|
2
Avevi GKwU Amg‡Zvv + 2 − 15 ≤ 0 †bIqv n‡jv| bZzb Amg‡Zvv cÖ‡ek Kiv‡bvi Rb¨ T †P‡c
cybivq wØNvZ wbe©vPb Ki‡j c~‡e©i g‡Zv Pvi ai‡bi AmgZv cÖ`k©b Ki‡e|
Gici D³ mgm¨vi Rb¨ 4 †P‡c 4 bs Av`k© iƒc wbe©vPb Ki‡Z n‡e|
2
I Gi mnM Ges aªæeK A_©vr = 1, = 2, = −15 cÖ‡ek Kwi‡q = Pvc‡j wb‡Pi w¯Œ‡bi g‡Zv
djvdj cÖ`wk©Z n‡e|
GLv‡b ≤ ≤ ïaygvÎ mgvav‡bi AvK…wZ wb‡`©k K‡i|
6.2 wÎNvZhy³ AmgZv
wÎNvZhy³ AmgZvi mgvavb Kivi Rb¨ wx Pvcvi ci 3 †P‡c wÎNvZ Polynomial wbe©vPb Ki‡Z n‡e|
d‡j wb‡Pi wØZxq w¯Œ‡bi g‡Zv GKwU w¯Œb cÖ`wk©Z n‡e|
Gici cÖ‡qvRb Abymv‡i AmgZv wbe©vPb K‡i Gi mgvavb Kiv hvq|
2
3
‡hgb, − − 9 + 9 ≥ 0 Amg‡ZvvwUi mgvavb Kivi Rb¨ 3 Pvc‡Z n‡e| Gici = 1, =
−1, = −9, = 9 cÖ‡ek Kwi‡q = Pvc‡j wb‡Pi wØZxq w¯Œ‡bi g‡Zv djvdj cÖ`wk©Z n‡e|
70