Page 461 - Corporate Finance PDF Final new link
P. 461

NPP













                  BRILLIANT’S     Analysis of Risk and Uncertainty in Investment Decisions          461


                  Thus,
                                Risk Adjusted Discount Rate = Risk – Free Rate + Risk Premium
                      The  risk adjusted  discount rate  method   [añH$ ES>OñQ>oS> {S>ñH$mCÝQ> aoQ> _oWS> H$mo Bg àH$ma
                  can be formally expressed as follows:       ^r ì`º$ {H$`m Om gH$Vm h¡…
                                                            n  NCF
                                                     NPV         t  t
                                                                
                                                            t 0  1 k 
                      Where k is a risk adjusted rate.            Ohm±, k [añH$ ES>OñQ>oS> aoQ> h¡Ÿ&
                      The Risk Adjusted Discount Rate (RADR)      [añH$ ES>OñQ>oS> {S>ñH$mCÝQ> aoQ> _oWS>, (RADR)
                  method is one of the most widely used methods  H¡${nQ>b ~OqQ>J {S>grOZ _| [añH$ H$mo em{_b H$aZo H$s
                  for  incorporating  risk  into  the  capital  g~go bmoH${à` _oWS>²g _| EH$ h¡Ÿ& `{X àmoOoŠQ> go Ow‹S>r
                  budgeting decision. If the project is less risky,
                  the  RADR  will  be  lower  and  if  the  risk  [añH$ H$_ h¡ Vmo [añH$ ES>OñQ>oS> {S>ñH$mCÝQ> aoQ> H$_ hmoJm
                  associated with the project is higher, the RADR  Am¡a `{X `h [añH$ A{YH$ h¡ Vmo aoQ> ^r A{YH$ hmoJmŸ&
                  would also be higher. The use of a single rate of  {d{^ÝZ àmoOoŠQ²>g go Ow‹S>r [añH$ Ho$ bodb na Ü`mZ {XE
                  discount without considering the level of risk  {~Zm {H$gr EH$ hr {S>ñH$mCÝQ> aoQ> H$m Cn`moJ H$aZm,
                  of  various  projects  would  be  logically
                  inconsistent with the goal of wealth maximi-  eo`ahmoëS>g© Ho$ doëW _¡pŠO_mBOoeZ Ho$ CÔoí` Ho$ AZwê$n
                  zation of shareholders.                     Zht hmoJmŸ&
                      The relationship between the risk free rate,  [añH$ \«$s aoQ>,  [añH$ àr{_`_, [añH$ ES>OñQ>oS>
                  risk premium, RADR and the risk return line  {S>ñH$mCÝQ> aoQ> VWm [añH$ [aQ>Z© bmBZ Ho$ ~rM gå~ÝY H$mo
                  can be explained as follows:                Bg àH$ma ì`º$ {H$`m Om gH$Vm h¡…
                                               Return

                                                                       Risk Return Line
                                               C
                                       Risk
                                    adjustment  B
                                     premium
                                                A
                                        Risk free
                                                                         Risk
                                           rate  0          x 1   x 2
                              Fig.: Risk free rate, Risk premium and Risk return relationship
                  Accept-Reject Decision                      ñdrH¥${V `m AñdrH¥${V gå~ÝYr {ZU©`
                      The risk adjusted discount rate approach    [añH$ ES>OoñQ>oS> {S>ñH$mCÝQ> aoQ> EàmoM H$mo NPV Ed§
                  can  be  used  with  both  NPV  and  IRR    IRR XmoZm| hr Q>opŠZŠg Ho$ gmW à`moJ {H$`m Om gH$Vm h¡Ÿ&
                  techniques. If the NPV method is used, the NPV  `{X NPV _oWS> H$m Cn`moJ {H$`m OmVm h¡ Vmo [añH$ ES>OoñQ>oS>
                  is calculated by using risk adjusted rate. If NPV
                  is positive, the project would be acceptable. A  aoQ> H$m Cn`moJ H$aHo$ NPV kmV H$s Om gH$Vr h¡Ÿ& `{X
                  negative NPV indicates that the project should  NPV nm°{O{Q>d h¡ Vmo àmoOoŠQ> ñdrH¥${V `mo½` hmoJmŸ& `{X
                  be rejected. In case of IRR, the internal rate of  NPV ZoJo{Q>d h¡ Vmo BgH$m A{^àm` `h h¡ {H$ àmoOoŠQ>
   456   457   458   459   460   461   462   463   464   465   466