Page 11 - The prevalence of the Val66Met polymorphism in musicians: Possible evidence for compensatory neuroplasticity from a pilot study
P. 11
PLOS ONE Val66Met polymorphism in musicians: Evidence for compensatory neuroplasticity?
39. Dinoff A, Herrmann N, Swardfager W, Lancto ˆt KL. The effect of acute exercise on blood concentrations
of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci. 2017; 46
(1):1635–46. https://doi.org/10.1111/ejn.13603 PMID: 28493624
40. Palomar-Garcı ´a M-A ´ , Zatorre RJ, Ventura-Campos N, Bueicheku ´ E, A ´ vila C. Modulation of Functional
Connectivity in Auditory–Motor Networks in Musicians Compared with Nonmusicians. Cereb Cortex.
2017; 27(5):2768–78. https://doi.org/10.1093/cercor/bhw120 PMID: 27166170
41. Mosing MA, Verweij KJH, Madison G, Ulle ´n F. The genetic architecture of correlations between percep-
tual timing, motor timing, and intelligence. Intelligence. 2016; 57:33–40.
42. Repp BH, Penel A. Auditory dominance in temporal processing: new evidence from synchronization
with simultaneous visual and auditory sequences. Journal of Experimental Psychology: Human Percep-
tion and Performance. 2002; 28(5):1085. PMID: 12421057
43. Grahn JA. Neural mechanisms of rhythm perception: current findings and future perspectives. Topics in
cognitive science. 2012; 4(4):585–606. https://doi.org/10.1111/j.1756-8765.2012.01213.x PMID:
22811317
44. Chen JL, Penhune VB, Zatorre RJ. Listening to musical rhythms recruits motor regions of the brain.
Cerebral cortex. 2008; 18(12):2844–54. https://doi.org/10.1093/cercor/bhn042 PMID: 18388350
45. Chen JL, Rae C, Watkins KE. Learning to play a melody: An fMRI study examining the formation of
auditory-motor associations. NeuroImage. 2012; 59(2):1200–8. https://doi.org/10.1016/j.neuroimage.
2011.08.012 PMID: 21871571
46. Fujioka T, Ween JE, Jamali S, Stuss DT, Ross B. Changes in neuromagnetic beta-band oscillation after
music-supported stroke rehabilitation. Annals of the New York Academy of Sciences. 2012; 1252
(1):294–304. https://doi.org/10.1111/j.1749-6632.2011.06436.x PMID: 22524371
47. Chen JL, Penhune VB, Zatorre RJ. Moving on Time: Brain Network for Auditory-Motor Synchronization
is Modulated by Rhythm Complexity and Musical Training. Journal of cognitive neuroscience. 2008; 20
(2):226–39. https://doi.org/10.1162/jocn.2008.20018 PMID: 18275331
48. Pfordresher PQ, Palmer C. Effects of hearing the past, present, or future during music performance.
Perception & Psychophysics. 2006; 68(3):362–76. https://doi.org/10.3758/bf03193683 PMID:
16900830
49. van Vugt FT, Tillmann B. Auditory feedback in error-based learning of motor regularity. Brain Research.
2015; 1606:54–67. https://doi.org/10.1016/j.brainres.2015.02.026 PMID: 25721795
50. Fujii S, Lulic T, Chen JL. More Feedback Is Better than Less: Learning a Novel Upper Limb Joint Coordi-
nation Pattern with Augmented Auditory Feedback. Front Neurosci. 2016; 10. https://doi.org/10.3389/
fnins.2016.00251 PMID: 27375414
¨
¨
51. Grau-Sa ´nchez J, Munte TF, Altenmuller E, Duarte E, Rodrı ´guez-Fornells A. Potential benefits of music
playing in stroke upper limb motor rehabilitation. Neuroscience & Biobehavioral Reviews. 2020;
112:585–99. https://doi.org/10.1016/j.neubiorev.2020.02.027 PMID: 32092314
52. Schlaug G, Altenmuuller E, Thaut M. Music Listening and Music Making in the Treatment of Neurologi-
¨
¨
cal Disorders and Impairments. Music Perception. 2010; 27(4):249–50.
PLOS ONE | https://doi.org/10.1371/journal.pone.0245107 June 9, 2021 10 / 10