Page 6 - E Modul Data Analytics
P. 6

Data Analytics






                  7.2   Algoritma / Metodologi pada klasifikasi : decision tree, naïve bayes, dll ............ 74
                    7.2.1 Decision Tree ............................................................................................................ 74

                    7.2.2    Naïve Bayes .......................................................................................................... 82
                  7.3   Aplikasi Klasifikasi (Studi Kasus) .............................................................................. 84
                  7.4 Penggunaan software untuk pengolahan model klasifikasi ...................................... 87

               KEGIATAN PEMBELAJARAN 8 ................................................................................................... 95
                  Konsep Dasar Metoda Data Mining: Metoda Clustering Analysis .......................................... 95
                  8.1 Definisi metoda klastering .............................................................................................. 96

                  8.2   Algoritma / metodologi pada klastering : k-means, hirarki, dll .............................. 96
                    8.2.1 K-Means..................................................................................................................... 96

                    8.2.2    Algoritma Hierarchical Clustering ...................................................................... 99
                  8.3   Aplikasi klastering (Studi Kasus) ............................................................................. 101
                  8.4   Penggunaan software untuk pengolahan model klastering ................................ 117

                    8.4.1 Pengujian K-Means dengan RapidMiner ............................................................ 117
               KEGIATAN PEMBELAJARAN 9 ................................................................................................. 124
                  Konsep Dasar Metoda Data Mining: Metoda Association Rules ........................................... 124

                  9.1 Definisi dan Konsep Asosiasi Data ............................................................................. 125
                  9.2 Pengukuran Asosiasi Data Menggunakan Support, Confidence dan Lift Ratio. . 125
                  9.3 Contoh / studi kasus transaksi belanja di pasar swalayan menggunakan model
                  asosiasi data ......................................................................................................................... 127
                  9.4 Penggunaan Software Untuk Pengolahan Model Asosiasi Data ........................... 131

               DAFTAR PUSTAKA ................................................................................................................. 141























                                                             vi
   1   2   3   4   5   6   7   8   9   10   11