Page 17 - Buku Fiks Bu Izwita_Neat
P. 17
b. Apabila ∶ = ∶ maka ∶ = ∶
Pembuktian :
∶ = ∶ ⇔ = ( )
⇔ = ( )
⇔ = ( )
, ∶ = ∶ ↔ ∶ = ∶ ( )
c. Apabila ∶ = ∶ ( + ) ∶ = ( + ) ∶
Pembuktian :
∶ = ∶ ⇔ = ( )
⇔ + = + ( ℎ )
⇔ ( + ) . = . ( + ) ( )
+ +
⇔ = ( )
, ∶ = ∶ ⇔ ( + ): = ( + ) ∶ ( )
d. Apabila ∶ = ∶ ( − ) ∶ = ( − ) ∶
Pembuktian :
∶ = ∶ ⇔ =
⇔ − 1 = − 1 ( )
⇔ − = −
− −
⇔ = ( )
, ∶ = ∶ ⇔ ( − ): = ( − ) ∶ ( )
BAB 1 Perbandingan 13