Page 25 - E-catelog for advanced Course (2)
P. 25

  Linear Regression



                         Scatter Diagram


                         Correlation Analysis


                         Principles of Regression


                         Introduction to Simple Linear Regression



                         R shiny and Python Flask


                         Introduction to R shiny and Python Flask (deployment)


                         Multiple Linear Regression



                         Scatter diagram


                         Correlation Analysis


                         Correlation coefficient


                         Ordinary least squares



                         Principles of regression


                         Splitting the data into training, validation and testing datasets


                         Understanding Overfitting (Variance) vs Underfitting (Bias)



                         Generalization error and Regularization techniques


                         Introduction to Simple Linear Regression


                         Heteroscedasticity / Equal Variance


                         LINE assumption



                         Collinearity (Variance Inflation Factor)
   20   21   22   23   24   25   26   27   28   29   30