Page 46 - Mesenchymal Stem Cell-Derived Exosomes as an Emerging Paradigm for Regenerative Therapy and Nano-Medicine
P. 46
Li et al. Stem Cell Research & Therapy (2019) 10:278 Page 9 of 10
48. Tassew NG, Charish J, Shabanzadeh AP, Luga V, Harada H, Farhani N, et al. 69. Sandhya P, Kurien BT, Danda D, Scofield RH. Update on pathogenesis of
Exosomes mediate mobilization of autocrine Wnt10b to promote axonal Sjogren’s syndrome. Curr Rheumatol Rev. 2017;13(1):5–22.
regeneration in the injured CNS. Cell Rep. 2017;20(1):99–111. 70. Mavragani CP. Mechanisms and new strategies for primary Sjogren’s
49. Chan BD, Wong WY, Lee MM, Cho WC, Yee BK, Kwan YW, et al. Exosomes in syndrome. Annu Rev Med. 2017;68:331–43.
inflammation and inflammatory disease. Proteomics. 2019:e1800149. 71. Manoussakis MN, Kapsogeorgou EK. The role of intrinsic epithelial activation in
50. Xue M, Chen W, Xiang A, Wang R, Chen H, Pan J, et al. Hypoxic exosomes the pathogenesis of Sjogren’s syndrome. J Autoimmun. 2010;35(3):219–24.
facilitate bladder tumor growth and development through transferring long 72. Generali E, Costanzo A, Mainetti C, Selmi C. Cutaneous and mucosal manifestations
non-coding RNA-UCA1. Mol Cancer. 2017;16(1):143. of Sjogren’s syndrome. Clin Rev Allergy Immunol. 2017;53(3):357–70.
51. Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN. 73. Goules AV, Kapsogeorgou EK, Tzioufas AG. Insight into pathogenesis of
Salivary gland epithelial cell exosomes: a source of autoantigenic Sjogren’s syndrome: dissection on autoimmune infiltrates and epithelial
ribonucleoproteins. Arthritis Rheum. 2005;52(5):1517–21. cells. Clin Immunol. 2017;182:30–40.
52. Gallo A, Jang SI, Ong HL, Perez P, Tandon M, Ambudkar I, et al. Targeting 74. Mavragani CP, Moutsopoulos HM. Sjogren’s syndrome. Annu Rev Pathol.
the Ca(2+) sensor STIM1 by exosomal transfer of Ebv-miR-BART13-3p is 2014;9:273–85.
associated with Sjogren’s syndrome. EBioMedicine. 2016;10:216–26. 75. Yamaguchi T. Inflammatory response in dry eye. Invest Ophthalmol Vis Sci.
53. Aiello S, Rocchetta F, Longaretti L, Faravelli S, Todeschini M, Cassis L, et al. 2018;59(14):DES192–DES9.
Extracellular vesicles derived from T regulatory cells suppress T cell 76. Li X, Lu X, Sun D, Wang X, Yang L, Zhao S, et al. Adipose-derived
proliferation and prolong allograft survival. Sci Rep. 2017;7(1):11518. mesenchymal stem cells reduce lymphocytic infiltration in a rabbit model
54. Wen D, Peng Y, Liu D, Weizmann Y, Mahato RI. Mesenchymal stem cell and of induced autoimmune dacryoadenitis. Invest Ophthalmol Vis Sci. 2016;
derived exosome as small RNA carrier and Immunomodulator to improve 57(13):5161–70.
islet transplantation. J Control Release. 2016;238:166–75. 77. Satitpitakul V, Sun Z, Suri K, Amouzegar A, Katikireddy KR, Jurkunas UV, et al.
55. Jangamreddy JR, Haagdorens MKC, Mirazul Islam M, Lewis P, Samanta A, Vasoactive intestinal peptide promotes corneal allograft survival. Am J
Fagerholm P, et al. Short peptide analogs as alternatives to collagen in pro- Pathol. 2018;188(9):2016–24.
regenerative corneal implants. Acta Biomater. 2018;69:120–30. 78. Tariq M, Havens SJ. Corneal graft rejection. StatPearls. Treasure Island:
56. Han KY, Tran JA, Chang JH, Azar DT, Zieske JD. Potential role of corneal StatPearls Publishing StatPearls Publishing LLC; 2018.
epithelial cell-derived exosomes in corneal wound healing and 79. Marino J, Paster J, Benichou G. Allorecognition by T lymphocytes and
neovascularization. Sci Rep. 2017;7:40548. allograft rejection. Front Immunol. 2016;7:582.
57. Leszczynska A, Kulkarni M, Ljubimov AV, Saghizadeh M. Exosomes from 80. Gonzalez-Nolasco B, Wang M, Prunevieille A, Benichou G. Emerging role of
normal and diabetic human corneolimbal keratocytes differentially regulate exosomes in allorecognition and allograft rejection. Curr Opin Organ
migration, proliferation and marker expression of limbal epithelial cells. Sci Transplant. 2018;23(1):22–7.
Rep. 2018;8(1):15173. 81. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global
58. Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, et al. Effect of survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;
human corneal mesenchymal stromal cell-derived exosomes on corneal 134(2):167–73.
epithelial wound healing. Invest Ophthalmol Vis Sci. 2018;59(12):5194–200. 82. Williams R, Lace R, Kennedy S, Doherty K, Levis H. Biomaterials for
59. Knickelbein JE, Liu B, Arakelyan A, Zicari S, Hannes S, Chen P, et al. regenerative medicine approaches for the anterior segment of the eye. Adv
Modulation of immune responses by extracellular vesicles from retinal Healthcare Mater. 2018;7(10):e1701328.
pigment epithelium. Invest Ophthalmol Vis Sci. 2016;57(10):4101–7. 83. Basu J, Ludlow JW. Exosomes for repair, regeneration and rejuvenation.
60. Shigemoto-Kuroda T, Oh JY, Kim DK, Jeong HJ, Park SY, Lee HJ, et al. MSC- Expert Opin Biol Ther. 2016;16(4):489–506.
derived extracellular vesicles attenuate immune responses in two 84. Papotto PH, Marengo EB, Sardinha LR, Goldberg AC, Rizzo LV. Immunotherapeutic
autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell strategies in autoimmune uveitis. Autoimmun Rev. 2014;13(9):909–16.
Rep. 2017;8(5):1214–25. 85. Krishna U, Ajanaku D, Denniston AK, Gkika T. Uveitis: a sight-threatening
61. Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, et al. Effects of disease which can impact all systems. Postgrad Med J. 2017;93(1106):766–73.
mesenchymal stem cell-derived exosomes on experimental autoimmune 86. Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from
uveitis. Sci Rep. 2017;7(1):4323. genetics and therapeutic interventions. Immunity. 2015;43(6):1040–51.
62. Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH. Autophagy and 87. Pepple KL, Lin P. Targeting Interleukin-23 in the treatment of noninfectious
exosomes in the aged retinal pigment epithelium: possible relevance to uveitis. Ophthalmology. 2018;125(12):1977–83.
drusen formation and age-related macular degeneration. PLoS One. 2009; 88. Chong WP, van Panhuys N, Chen J, Silver PB, Jittayasothorn Y, Mattapallil
4(1):e4160. MJ, et al. NK-DC crosstalk controls the autopathogenic Th17 response
63. Hajrasouliha AR, Jiang G, Lu Q, Lu H, Kaplan HJ, Zhang HG, et al. Exosomes through an innate IFN-gamma-IL-27 axis. J Exp Med. 2015;212(10):1739–52.
from retinal astrocytes contain antiangiogenic components that inhibit 89. Caspi RR. A look at autoimmunity and inflammation in the eye. J Clin Invest.
laser-induced choroidal neovascularization. J Biol Chem. 2013;288(39): 2010;120(9):3073–83.
28058–67. 90. Sevgi DD, Davoudi S, Comander J, Sobrin L. Retinal pigmentary changes in
64. Li J, Xue H, Li T, Chu X, Xin D, Xiong Y, et al. Exosomes derived from chronic uveitis mimicking retinitis pigmentosa. Graefes Arch Clin Exp
mesenchymal stem cells attenuate the progression of atherosclerosis in Ophthalmol. 2017;255(9):1801–10.
ApoE(−/−) mice via miR-let7 mediated infiltration and polarization of M2 91. Shi Q, Wang Q, Li J, Zhou X, Fan H, Wang F, et al. A2E suppresses regulatory
macrophage. Biochem Biophys Res Commun. 2019;510(4):565–72. function of RPE cells in Th1 cell differentiation via production of IL-1beta
65. Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi- and inhibition of PGE2. Invest Ophthalmol Vis Sci. 2015;56(13):7728–38.
Mohammadi M, Ataei F, et al. MicroRNA-100 shuttled by mesenchymal stem 92. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global
cell-derived exosomes suppresses in vitro angiogenesis through modulating prevalence of age-related macular degeneration and disease burden
the mTOR/HIF-1alpha/VEGF signaling axis in breast cancer cells. Cell Oncol. projection for 2020 and 2040: a systematic review and meta-analysis. Lancet
2017;40(5):457–70. Glob Health. 2014;2(2):e106–e16.
66. Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells 93. Pennington KL, DeAngelis MM. Epidemiology of age-related macular
modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation degeneration (AMD): associations with cardiovascular disease phenotypes
via targeting HMGB1. Invest Ophthalmol Vis Sci. 2019;60(1):294–303. and lipid factors. Eye Vis (Lond). 2016;3:34.
67. Shiboski SC, Shiboski CH, Criswell LA, Baer AN, Challacombe S, Lanfranchi H, et al. 94. Bora NS, Matta B, Lyzogubov VV, Bora PS. Relationship between the
American College of Rheumatology classification criteria for Sjögren’ssyndrome: complement system, risk factors and prediction models in age-related
a data-driven, expert consensus approach in the Sjögren’s International macular degeneration. Mol Immunol. 2015;63(2):176–83.
Collaborative Clinical Alliance Cohort. Arthritis Care Res. 2012;64(4):475–87. 95. Ebrahimi KB, Fijalkowski N, Cano M, Handa JT. Decreased membrane
68. Lopez-Miguel A, Teson M, Martin-Montanez V, Enriquez-de-Salamanca A, complement regulators in the retinal pigmented epithelium contributes to
Stern ME, Gonzalez-Garcia MJ, et al. Clinical and molecular inflammatory age-related macular degeneration. J Pathol. 2013;229(5):729–42.
response in Sjogren syndrome-associated dry eye patients under 96. Liszewski MK, Java A, Schramm EC, Atkinson JP. Complement dysregulation and
desiccating stress. Am J Ophthalmol. 2016;161:133–41 e1–2. disease: insights from contemporary genetics. Annu Rev Pathol. 2017;12:25–52.