Page 54 - Basic Statistics
P. 54

49





                     Area on the left of z value is 0.38 or P(Z <z) = 0.38, shown in Figure 3.9. Because

                     z lies on left of 0 then z value is negative. P (Z <z) = 0.5 - P (z <Z <0), then P(z

                     <Z <0) = 0.12. If applied to the symmetry properties of the normal distribution,

                     P(z  <Z  <0)  =  P(0  <Z  <-z).  From  Table  A.1  we  get  P(0  <Z  <0.31)  =  0.12,

                     subsequently obtained - z = 0.31 or z = -0.31  thus
                              x = (6)(-0.31) + 40

                              = 38.14



                     EXERCISES  3

                     1.  If the random variable Z , which is standard normally distribution, use the
                        standard normal table Z to find:

                        a.  P ( -2 < Z < 1,5 )
                        b.  P ( Z< 1.97 )
                        c.  P ( Z > 1.96 )


                     2. If the random variable X , which is  normally distribution, has a mean 43 and
                        a standard deviation of 5 , find the probability:

                        a.  P ( 40 < X < 49 )
                        b.  P ( X < 41 )
                        c.  P ( X > 50 )

                     3. Use the standard normal table Z to find the value of z, if the right side of the

                        area  = 0.05 (  Z0.05 )


















                                     ~~* CHAPTER 3   NORMAL PROBABILITY DISTRIBUTION *~~
   49   50   51   52   53   54   55   56   57   58   59