Page 97 - Basic Statistics
P. 97

92




                     Computerized solution:

                     Table  5.4     Splus print out


                     *** Linear Model ***

                     Call: lm(formula = gasoline ~ car, data = riset1, na.action
                             = na.exclude)

                     Residuals:
                          Min      1Q  Median     3Q    Max
                      -0.2982 -0.1504 0.04567 0.1123 0.3172

                     Coefficients:
                                   Value Std. Error t value Pr(>|t|)
                     (Intercept) -0.7124  1.3361    -0.5332  0.6056
                           Car    0.2205  0.0459     4.8017  0.0007


                     Residual standard error: 0.196 on 10 degrees of freedom

                     Multiple R-Squared: 0.6975

                     F-statistic: 23.06 on 1 and 10 degrees of freedom, the p-value is
                     0.0007218

                     Correlation of Coefficients:
                           (Intercept)
                     Car   -0.9991

                     Analysis of Variance Table

                     Response: gasoline

                     Terms added sequentially (first to last)
                               Df Sum of Sq   Mean Sq  F Value        Pr(F)
                         Car    1 0.8854023 0.8854023 23.05599 0.0007218227
                     Residuals 10 0.3840227 0.0384023




                     Comment:

                     Solving of the above computerized presenting:

                     a.  In the coefficients part, the estimations of both the value of the coefficients:

                         ˆ
                                           ˆ
                         β = –0.7124 and β = 0.2205
                                            1
                          0
                                                             ˆ
                        So that the regression equation is  Y  =  -0.7128 + 0.2205 Xj
                                                              j






                                         ~~* CHAPTER 5   LINEAR REGRESSION MODEL *~~
   92   93   94   95   96   97   98   99   100   101   102