Page 114 - YORAM RUDY BOOK FINAL
P. 114

P. 114
                            4.2  The Field of an Elongated Cylindrical Fiber



               Typical dimensions of cardiac ventricular myocytes are 100 microns in length and 15

        microns in diameter. For modeling purposes, their shape can be idealized as an elongated circular
        cylinder 246  (Figure 4.3). We define on the surface S the function V as:
                                                                                f

                                                                   Z
                                         − σ  i V  f  ( ) σ=  0 φ  ( ) σ−  i φ ( )                                                (4.11)
                                                                                Z
                                                    Z
                                                                              i
                                                                φ
        Substitution in (4.8) provides:

                                                 1 σ                       1      
                                                                      )
                                      φ    =  −         i  ∫  V (   Z ∇        •   s d                       (4.12)
                                        o
                                                                 f
                                                4 σπ    o   s               r  
        We extend the V  function into the volume of the cylinder v by defining its value on each cross
                          f
        section as a constant, equal to its value on the surface:




                                                                               Z
                                          V   ( ,ρ Z  ) V=    ( Za,  ) V=     ( )
                                                                    f  f    f                                  (4.13)


        With this extension, Gauss theorem     245  can be applied to convert the surface integral (4.12) into a
        volume integral:

                                                1 σ                         1   
                                      φ   =  −       i  ∫ ∇ •  V ρ   ,  )       dv                         (4.14)
                                                                   ( Z ∇
                                                                                   dv
                                                                 f
                                       o
                                               4 σπ  o  v                    r   
        Considering that V    is constant on every cross section A and varies only with Z, (4.14) becomes:
                             f

                                                                                                     1 
                                                                                                     ∂
                                                                                                        
                                                                                   ∞
                                                                                              Z
                                                     Z
                   1 σ             1        ∂V  f  ( )           1 σ    i            ∂ V  f  ( )    r  
        φ   =  −         i  ∫  ∇       •  a ˆ z       dv   =  −           ∫ dA dA ∫                     dZ dZ (4.15)
                                                         dv


          o

                                                                    π
                  4 σπ   o  v      r           ∂Z               4 σ    o  A     − ∞     ∂ Z       ∂ Z
        For a cell in an extensive medium ϕ << ϕ , ϕ ~V and
                                                     i
                                               0
                                                        i
                                                           m
                                                                               1 
                                              1 σ            ∞    ∂ V  ( )     ∂   r  
                                                                        Z
                                                                                  
                                      φ   =         i  ∫ dA  ∫ −     m              dZ                         (4.16)
                                                                                    dZ
                                                        dA
                                        o

                                               π
                                             4 σ    o                ∂ Z      ∂ Z
                                                       A    − ∞
   109   110   111   112   113   114   115   116   117   118   119