Page 9 - The Real Work Of Data Science Turning Data Into Information, Better Decisions, And Stronger Organizations by Ron S. Kenett, Thomas C. Redman (z-lib.org)_Neat
P. 9

xii                                                                 Contents


            5  Get Out There                                                       21
               Understand Context and Soft Data                                    21
               Identify Sources of Variability                                     22
               Selective Attention                                                 23
               Memory Bias                                                         23
               Implications                                                        23
            6  Sorry, but You Can’t Trust the Data                                 25
               Most Data Is Untrustworthy                                          25
               Dealing with Immediate Issues                                       27
               Getting in Front of Tomorrow’s Data Quality Issues                  29
               Implications                                                        30

            7  Make It Easy for People to Understand Your Insights                 31
               First, Get the Basics Right                                         31
               Presentations Get Passed Around                                     33
               The Best of the Best                                                34
               Implications                                                        34

            8  When the Data Leaves Off and Your Intuition Takes Over              35
               Modes of Generalization                                             36
               Implications                                                        38

            9  Take Accountability for Results                                     39
               Practical Statistical Efficiency                                    39
               Using Data Science to Perform Impact Analysis                       41
               Implications                                                        42

           10  What It Means to Be “Data‐driven”                                   43
               Data‐driven Companies and People                                    43
               Traits of the Data‐driven                                           44
               Traits of the Antis                                                 46
               Implications                                                        46

           11  Root Out Bias in Decision‐making                                    49
               Understand Why It Occurs                                            50
               Take Control on a Personal Level                                    50
               Solid Scientific Footings                                           51
                 Problem 1                                                         52
                 Problem 2                                                         52
               Implications                                                        53

           12  Teach, Teach, Teach                                                 55
               The Rope Exercise                                                   55
               The “Roll Your Own” Exercise                                        56
   4   5   6   7   8   9   10   11   12   13   14