Page 167 - The Toxicology of Fishes
P. 167

Toxicokinetics in Fishes                                                    147


                       Perry, S.F. and McDonald, G. 1993. Gas exchange, in The Physiology of Fishes, Evans, D.H., Ed., CRC Press,
                          Boca Raton, FL, pp. 251–278.
                       Persson, L. 1982. Rate of food evacuation in roach (Rutilus rutilus) in relation to temperature, and the
                          application of evacuation rate estimates for studies on the rate of food consumption. Freshwater Biol.,
                          12: 203–210.
                       Persson, L. 1986. Patterns of food evacuation in fishes: a critical review. Environ. Biol. Fishes, 16: 51–58.
                       Persson, N.J., Gustafsson, O., Bucheli, T.D., Ishaq, R., Næs, K., and Broman, D. 2002. Soot-carbon influenced
                          distribution of PCDD/Fs in the marine environment of the Grenlandsfjords, Norway. Environ. Sci. Technol.,
                          36: 4968–4974.
                       Piiper, J. and Scheid, P. 1984. Model analysis of gas transfer in fish gills, in Fish Physiology, Vol. 10, Part A,
                          Hoar, W.S. and Randall, D.J., Eds., Academic Press, Orlando, FL, pp. 230–259.
                       Plakas, S.M. and James, M.O. 1990. Bioavailability, metabolism, and renal excretion of benzoic acid in the
                          channel catfish (Ictalurus punctatus). Drug Metab. Dispos., 18: 552–556.
                                                                                           3
                       Plakas, S.M., McPhearson, R.M., and Guarino, A.M. 1988. Disposition and bioavailability of  H-tetracycline
                          in the channel catfish (Ictalurus punctatus). Xenobiotica, 18: 83–93.
                       Plakas, S.M., Dickey, R.W., Barron, M.G., and Guarino, A.M. 1990. Tissue distribution and renal excretion
                          of the drug ormetoprim after intravascular and oral administration in the channel catfish (Ictalurus
                          punctatus). Can. J. Fish. Aquat. Sci., 47: 766–771.
                       Plakas, S.M., Stehly, G.R., and Khoo, L. 1992a. Pharmacokinetics and excretion of phenol red in the channel
                          catfish. Xenobiotica, 22: 551–557.
                       Plakas, S.M., Khoo, L., and Barron, M.G. 1992b. 2,4-Dichlorophenoxyacetic acid disposition following oral
                          administration in channel catfish. J. Agric. Food Chem., 40: 1236–1239.
                       Ploemen, J.-P.H.T.M., Wormhoudt, L.W., Haenen, G.R.M.M., Oudshoorn, M.J., Commandeur, J.N.M., Ver-
                          meulen, N.P.E., de Waziers, I., Beaune, P.H., Watabe, T., and van Bladeren, P.J. 1997. The use of in vitro
                          metabolic parameters to explore the risk assessment of hazardous compounds: the case of ethylene
                          dibromide. Toxicol. Appl. Pharmacol., 143: 56–69.
                       Poulin, P. and Krishnan, K. 1995. An algorithm for predicting tissue:blood partition coefficients of organic
                          chemicals from n-octanol:water partition coefficient data. J. Toxicol. Environ. Health, 46: 117–129.
                       Poulin, P. and Krishnan, K. 1996a. A tissue composition-based algorithm for predicting tissue:air partition
                          coefficients of organic compounds. Toxicol. Appl. Pharmacol., 136: 126–130.
                       Poulin, P. and Krishnan, K. 1996b. Molecular structure-based prediction of the partition coefficients of organic
                          chemicals for physiological pharmacokinetic models. Toxicol. Methods, 6: 117–137.
                       Price, J.W. 1931. Growth and Gill Development in the Small-Mouthed Black Bass, Micropterus dolomieu
                          Lacaepede, Contribution No. 4 to the Franz Theodore Stone Laboratory, The Ohio State University Press,
                          Columbus, OH.
                       Pritchard, J.B. 1981. Renal handling of environmental chemicals, in Toxicology of the Kidney, Hook J.B., Ed.,
                          Raven Press, New York, pp. 99–116.
                       Pritchard, J.B. 2001. Renal handling of organic acids and bases, in The Textbook of Nephrology, 4th ed.,
                          Massry, S.G. and Glassock, R.J., Eds., Lippincott Williams & Wilkins, Baltimore, MD, pp. 93–97.
                       Pritchard, J.B. and Miller, D.S. 1993. Mechanisms mediating renal secretion of organic anions and cations.
                          Physiol. Rev., 73: 765–796.
                       Pritchard, J.B. and Renfro, J.L. 1984. Interactions of xenobiotics with teleost renal function, in  Aquatic
                          Toxicology, Vol. 2, Weber, L.J., Ed., Raven Press, New York, pp. 51–106.
                       Prosser, C.L. 1973. Comparative Animal Physiology, 3rd ed., W.B. Saunders, Philadelphia, PA.
                       Ramsey, J.C. and Andersen, M.E. 1984. A physiologically based description of the inhalation pharmacokinetics
                          of styrene in rats and humans. Toxicol. Appl. Pharmacol., 73: 159–175.
                       Randall, D.J. 1982. The control of respiration and circulation in fish during exercise and hypoxia. J. Exp.
                          Biol., 100: 275–288.
                       Randall, D.J. and Daxboeck, C. 1984. Oxygen and carbon dioxide transfer across fish gills, in Fish Physiology,
                          Vol. 10, Part A, Hoar, W.S. and Randall, D.J., Eds., Academic Press, Orlando, FL, pp. 263–307.
                       Rane,  A.,  Wilkinson, G.R., and Shand, D.G. 1977. Prediction of hepatic extraction ratio from  in vitro
                          measurement of intrinsic clearance. J. Pharmacol. Exp. Therapeut., 200: 420–424.
                       Rebbeor, J.F., Connolly, G.C., Henson, J.H., Boyer, J.L., and Ballatori, N. 2000. ATP-dependent GSH and
                          glutathione S-conjugate transport in skate liver: role of an Mrp functional homologue. Am. J. Physiol.,
                          279: G417–G425.
   162   163   164   165   166   167   168   169   170   171   172