Page 402 - The Toxicology of Fishes
P. 402

382                                                        The Toxicology of Fishes


                       Camp, K. (1997). Disease Resistance and Immune Function in Full-Sib Families of Channel Catfish, Ictalurus
                          punctatus, Master’s thesis. College of Veterinary Medicine, Mississippi State University, Starkville.
                       Camp, K., C. Rice et al. (2000). Survivability and immune responses after challenge with Edwardsiella ictaluri
                          in it susceptible and resistant families of channel catfish, Ictalurus punctatus. Fish Shellfish Immunol., 10,
                          475–487.
                       Carvan, M., E. P. Gallagher et al. (2007). Roundtable discussion: fish models in toxicology. Zebrafish, 4(1),
                          9–20.
                       Celander, M., M. J. Ronis et al. (1989). Initial characterization of a constitutive cytochrome P-450 isoenzyme
                          in rainbow trout liver. Mar. Environ. Res., 28, 9.
                       Celander, M., M. E. Hahn et al. (1996). Cytochromes P450 (CYP) in the Poeciliopsis lucida hepatocellular
                          carcinoma cell line (PLHC-1), dose- and time-dependent glucocorticoid potentiation of CYP1A induction
                          without induction of CYP3A. Arch. Biochem. Biophys., 329(1), 113–122.
                       Chan, K. M., P. L. Davies et al. (1992). P-glycoprotein genes in the winter flounder, Pleuronectes americanus:
                          isolation of two types of genomic clones carrying 3′ terminal exons. Biochim. Biophys. Acta, 1171(1),
                          65–72.
                       Chawla, A., J. J. Repa et al. (2001). Nuclear receptors and lipid physiology: opening the X-files. Science,
                          294(5548), 1866–1870.
                       Cheshenko, K., F. Brion et al. (2007). Expression of zebra fish aromatase cyp19a and cyp19b genes in response
                          to the ligands of estrogen receptor and aryl hydrocarbon receptor. Toxicol. Sci., 96(2), 255–267.
                       Chiang, J. Y. (2004). Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms.  J.
                          Hepatol., 40(3), 539–551.
                       Cho, K. Z., S. Seki et al. (2000). Kupffer cell activation and hematopoiesis in the liver of autoimmune MRL-
                          lpr/lpr mice. Arch. Histol. Cytol., 63(5), 473–483.
                       Chui, Y. C., M. M. Hansell et al. (1985). Effects of chlorinated diphenyl ethers on the mixed-function oxidases
                          and ultrastructure of rat and trout liver. Toxicol. Appl. Pharmacol., 81(2), 287–294.
                       Clarke, D. J., S. G. George et al. (1991). Glucuronidation in fish. Aquat. Toxicol., 20(1–2), 35–56.
                       Collier, T. K. and U. Varanasi. (1991). Hepatic activities of xenobiotic metabolizing enzymes and biliary levels
                          of xenobiotics in English sole (Parophrys vetulus) exposed to environmental contaminants. Arch. Environ.
                          Contam. Toxicol., 20(4), 462–473.
                       Collier, T. K., S. V. Singh et al. (1992). Hepatic xenobiotic metabolizing enzymes in two species of benthic
                          fish showing different prevalences of contaminant-associated liver neoplasms. Toxicol. Appl. Pharmacol.,
                          113(2), 319–324.
                       Collier, T. K., B. F. Anulacion et al. (1995). A field evaluation of cytochrome P4501A as a biomarker of
                          contaminant exposure in three species of flatfish. Environ. Toxicol. Chem., 14(1), 143–152.
                       Cooper, P. S., W. K. Vogelbein et al. (1999). Altered expression of the xenobiotic transporter P-glycoprotein
                          in liver and liver tumours of mummichog (Fundulus heteroclitus) from a creosote-contaminated environ-
                          ment. Biomarkers, 4(1), 48–58.
                       Couch, J.  A. (1993). Light and electron-microscopic comparisons of normal hepatocytes and neoplastic
                          hepatocytes of well-differentiated hepatocellular carcinomas in a teleost fish. Dis. Aquat. Org., 16(1), 1–14.
                       Coulombe, R. A., G. S. Bailey et al. (1984). Comparative activation of aflatoxin-B 1  to mutagens by isolated
                          hepatocytes from rainbow trout (Salmo gairdneri) and Coho salmon (Oncorhynchus kisutch). Carcino-
                          genesis, 5(1), 29–33.
                       Cowey, C. B. and M. J. Walton. (1982). Intermediary metabolism. In Fish Nutrition, Halver, J., Ed., Academic
                          Press, San Diego, CA, pp. 260–332.
                       Cravedi, J. P. and M. Baradat. (1991). Comparative metabolic profiling of chloramphenicol by isolated
                          hepatocytes from rat and trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. C Pharmacol. Toxicol.
                          Endocrinol., 100(3), 649–652.
                       Cravedi, J. P., A. Paris et al. (1996). Maintenance of cytochrome P450 content and phase I and phase II enzyme
                          activities in trout hepatocytes cultured as spheroidal aggregates. Comp. Biochem. Physiol. C Pharmacol.
                          Toxicol. Endocrinol., 113(2), 241–246.
                       Cravedi, J. P., A. Lafuente et al. (1999). Biotransformation of pentachlorophenol, aniline and biphenyl in
                          isolated rainbow trout (Oncorhynchus mykiss) hepatocytes: comparison with in vivo metabolism. Xeno-
                          biotica, 29(5), 499–509.
                       Cravedi, J. P., G. Boudry et al. (2001). Metabolic fate of 2,4-dichloroaniline, prochloraz and nonylphenol
                          diethoxylate in rainbow trout: a comparative in vivo/in vitro approach. Aquat. Toxicol., 53(3–4), 159–172.
   397   398   399   400   401   402   403   404   405   406   407