Page 177 - Linear Models for the Prediction of Animal Breeding Values
P. 177

1
        When both sire (f) and dam (d) of i are known, s′A s =  (a  + a  + a  + a ) where
                                                   i  i−1  4  ff  fd  df  dd
                                                                     −1
        a  are the elements of A  for f and d. Since a  = (1 + a ), then (a  − s′A s)  can be writ-
         jj                 i−1              ii      ff      ii  i  i−1
                            −1
                                                                     −1
        ten as (1 −  (a  + a )) . The application of Eqn 10.11 to calculate A  for the pedi-
                  1
                  4  ff  dd
        gree in Example 10.1 is straightforward. For instance, for the first two animals with
                          −1
                                                               −1
        parents unknown, A   is an identity matrix of order 2. Then A   can then be calcu-
                          2                                     3
                                       −1
        lated using Eqn 10.11. Given that A   has been calculated, the inverse of A for all five
                                       4
        animals can be illustrated as follows:
                                    −1
                                                                        −1
                                                      −1
            For animal 5, (a  − s′ A s )  = (1 −  (a  + a ))  = (1 −  (1 + 1.25))  = 2.286.
                                            1
                                                              1
                          55  5  4 5        4  33  44         4
        Then Eqn 10.11 is:
                ⎡  2.000  0.500  −0.500  −1.000 0.000 ⎤   ⎛ 0.0 0.0  0.0  0.0  0.0 ⎞
                                                            0
                ⎢                                 ⎥       ⎜                     ⎟
                ⎢  0.500  1.500  −1.000  0.000 0.0000 ⎥   ⎜ 0.0 0.0  0.0  0.0  0.0 ⎟
                ⎢                                 ⎥       ⎜                     ⎟
                ⎢
                                                          ⎜
            A 5 = 0.500−  − 1.000  2.500 − 1.000 0.000 ⎥ ⎥ + (2.286) 0.0 0.0  0.25  0.25 − 0.5 ⎟ ⎟
             −1
                ⎢
                                                          ⎜
                ⎢ −      0.000 −                  ⎥       ⎜             0..25 −  ⎟
                ⎢  1.000        1.000  2.000 0.000⎥       ⎜ 0.0 0.0  0.25     0.5 ⎟
                ⎢                                 ⎥       ⎜                     ⎟
                ⎢ ⎣  0 0.000  0.000  0.000  0.000 0.000 ⎦ ⎥  ⎝ 0.0 0.0 − 0.5  − 0.5  1.0⎠
                ⎡  2.000  0.500 − 0..500 − 1.000  0.000 ⎤
                ⎢                                  ⎥
                ⎢  0.500  1.500 − 1.000  0.000  0.000 ⎥
                ⎢                                  ⎥
                ⎢
               = − 0.500 − 1.000  3.071 − 0.429 − 1.143 ⎥ ⎥
                                    1
                ⎢
                ⎢                                  ⎥
                ⎢ − 1.000  0.000 − 0.429  2.571 − 1.143⎥
                ⎢                                  ⎥
                                       −
                ⎣ ⎢  0.000  0.000 − 1.143 −1.143  2.28 ⎦ ⎥
        where s′ = (0  0  0.5  0.5).
               5
            Applying Eqns 10.9, Van Arendonk et al. (1994) showed that when alleles are
        ordered chronologically, G  can be calculated as:
                                v,i
                  é G vi-1     G vi-1 s i ù
                     ,
                                 ,
            G vi  = ê s¢ i ë ê  G v i-1  g ii  ú û ú                       (10.12)
              ,
                      ,
        where s  is the column vector of i − 1 elements containing non-zero elements relating
               i
        allele i to paternal and maternal alleles of parent (if known) and zeros elsewhere;
        G     is the covariance matrix for MQTL for alleles 1 to (i − 1); and g  is the diagonal
          v,i−1                                                     ii
        element of G  for the k allele, which is equal to 1. Using the same notation for the rows
                   v
        in G  shown in Section 10.3.1, s  for animals 3, 4 and 5 are: s′ =[1 – rr 0 0], s′  =
            v                        i                        3p              3m
        [0 0 r (1 − r) 0], s′  = [r 1 – r 0 0 0 0], s′  = [0 0 0 0 (1 − r) r 0], s′  = [0 0 0 0 0 0
                        4p                  4m                     5p
        (1 − r) r] and s′  = [0 0 0 0 (1 − r) r 0 0 0]. Thus G  can easily be constructed using
                     5m                              v
        Eqn 10.12.
        10.5   Calculating the Inverse of G
                                               v
        Fernando and Grossman (1989) used an approach similar to that for setting up A −1
        in calculating the inverse of G . They showed that G  could be expressed as:
                                  v                   v
            G  = (Q )′ HQ −1
                   −1
              v
                    −1
        Therefore, G  can be written as:
                    v
            G  = QH Q′                                                     (10.13)
              −1
                    −1
              v
        Use of Genetic Markers in Breeding Value Prediction                  161
   172   173   174   175   176   177   178   179   180   181   182