Page 318 - Linear Models for the Prediction of Animal Breeding Values
P. 318

Matrix subtraction follows the same principles used for matrix addition. If B = X − Y,
         then b = x − y . Thus the matrix B obtained by subtracting Y from X above is:
              ij  ij  ij
                       é 40 --(2)  10 - 20ù  é 42  -10ù
            B= X -  Y =  ê               ú   =  ê     ú ú
                                      -
                       ë  39 - 4  -25 40 û   ë 35  -65 û

         A.3.3  Matrix multiplication

         Two matrices can be multiplied only if the number of columns in the first matrix
         equals the number of rows in the second. The order of the product matrix is equal to
         the number of rows of the first matrix by the number of columns in the second. Given
         that C = AB, then:
                       n
                    m
            C = c  = å å  z  a b
                 ij      å ik kj
                    j = i1  = k1  =1
         where m = number of columns in B, n = number of rows in A and z = number of rows
         in B. Let:
                é 14 -  1ù        é 25ù
                ê
                         ú
                                  ê
            A =  25     0 ;   B =  43  ú ú
                ê
                                  ê
                         ú
                ê ë 36  1ú û      ê ë 61ú û
         Then C can be obtained as:
            c  = 1(2) + 4(4) + −1(6) = 12 (row 1 of A multiplied by column 1 of B)
             11
            c  = 2(2) + 5(4) + 0(6) = 24 (row 2 of A multiplied by column 1 of B)
             21
            c  = 3(2) + 6(4) + 1(6) = 36 (row 3 of A multiplied by column 1 of B)
             31
            c  = 1(5) + 4(3) + −1(1) = 16 (row 1 of A multiplied by column 2 of B)
             12
            c  = 2(5) + 5(3) + 1(1) = 26 (row 2 of A multiplied by column 2 of B)
             22
            c  = 3(5) + 6(3) + 1(1) = 34 (row 3 of A multiplied by column 2 of B)
             23
                ⎡ 12 16⎤
                ⎢      ⎥
            C = 24 26  ⎥
                ⎢
                ⎢ ⎣ 36 34⎥ ⎦
         Note that C has order 3 × 2, where 3 equals the number of rows of A and 2 the
         number of columns in B. Also, note that AB is not equal to BA, but IA = AI = A, where
         I is an identity matrix. If M is the product of a scalar g and a matrix B, then M = b g,
                                                                               ij
         i.e. each element of M equals the corresponding element in B multiplied by g.

         A.3.4  Direct product of matrices

         Given a matrix G of order n by m and A of order t by s, the direct product is:

                   ég 11 A  g 12 Aù
            G Ä A = ê         ú
                   ë g 21 A  g 22 A û


          302                                                            Appendix A
   313   314   315   316   317   318   319   320   321   322   323