Page 122 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 122

−1
                                                     –1
         in the second row of Eqn 6.11 is replaced by Z * ′R Z *  + (D ⊗ A ), where D  is a
                                                             n               n
         diagonal matrix of eigenvalues. Again, the last row of Eqn 6.11 is omitted. It there-
         fore involves decomposing  G to a matrix of eigenvectors (Z * ) and corresponding
         eigenvalues (D). Thus Z *  and D, respectively, are:
                 ⎛  0.7710 0.3896  −0.02940  −0.5029⎞
                 ⎜ −0.5983 0.7139  −0.0268   −0.3628 ⎟
            Z = ⎜                                   ⎟ ⎟  and
              *
                 ⎜  0..0865 0.2427  0.9288    0.2664⎟
                 ⎜ ⎝  0.2000 0.5288 − 0.3685  0.7379⎠ ⎟
             D  = diag (8 8159 67 6963 22 8286 17 6592.  .  .  .  )
                  −1
               *
                     *
         Thus Z ′R Z  for animal i is:
               i     i
                      ⎛  0.042  −0.009  −0.003   0.004⎞
                      ⎜  −0.009  0.018  −0.004  −0.007 ⎟
            ZR Z = ⎜                                  ⎟
              ′
                −1
              *
                   *
              i    i
                      ⎜ −0..003 − 0.004  0.018   0.001⎟
                      ⎜ ⎝  0.004 − 0.007  0.001  0.030⎠ ⎟
         The MME are set up as usual. Similar again to the FA model, the PC has 40 equations
         and 388 non-zero elements. The solutions for the various effects from solving the
         MME are:
         Solutions for sex of calf effects

             WWG      PWG      MSC      BFAT
         M   4.352    6.795    9.412    0.231
         F   3.488    5.959    7.095    0.535

         Animal solutions
                    Untransformed solutions                                Transformed solutions
             WWG       PWG      BFAT     MSC     WWG       PWG      MSC     BFAT

         1   −0.032    0.287    0.303   −0.032    0.094    0.227    0.340    0.010
         2   −0.009   −0.038    0.314    0.118   −0.090   −0.073    0.313   −0.050
         3    0.031   −0.163    0.047    0.089   −0.086   −0.169    0.030   −0.032
         4   −0.002    0.015   −0.844   −0.279    0.170    0.136   −0.855    0.113
         5    0.045   −0.511   −0.473    0.078   −0.190   −0.407   −0.539   −0.029
         6   −0.062    0.496    1.276    0.186    0.014    0.290    1.350   −0.083
         7    0.007   −0.571   −0.732    0.022   −0.207   −0.400   −0.812   −0.015
         8   −0.018    0.413    1.362    0.252   −0.019    0.178    1.431   −0.101




         6.4.3  Analysis with reduced rank PC model

         The diagonal matrix D with the full PC model in Section 6.4.2 indicates that the first prin-
         cipal component accounts for about 8.82% of the total genetic variance. Deleting the first


          106                                                             Chapter 6
   117   118   119   120   121   122   123   124   125   126   127