Page 356 - Linear Models for the Prediction of Animal Breeding Values 3rd Edition
P. 356

joint and full conditional distributions   progeny performance 109
               (continued)                        sire and grandsire 119–120
            multiple chain/short chain        matrix algebra
                  approach 264                    addition and subtraction 302
            parameters 262                        column vector 299
                                                  definition 299
                                                  diagonal matrix 300
         Legendre polynomials                     direct product 302–303
               evaluation 325–326                 eigenvalues and eigenvectors 305
         linear equations                         inverse matrix 303–304
            description 271                       multiplication 302
            direct inversion 271                  rank of matrix 304
            iteration, mixed model equations see  singular matrix 305
                  iteration, mixed model          square matrix 300
                  equations                       symmetric matrix 301
            PCG see preconditioned conjugate      transpose, matrix 301
                  gradient (PCG)                  triangular matrix 300–301
         longitudinal data                    MBLUP see multivariate best linear unbiased
            beef cattle 130                         prediction (MBLUP)
            CFs see covariance functions (CFs)  MCMC see Markov chain Monte Carlo
            covariance function and RRM             (MCMC) methods
                  equivalence 155             MGS model see maternal grandsire (MGS)
            fixed regression model 131–136          model
            repeated measurements 130         mixed model equations (MME)
            RRM see random regression model       animal and dominance genetic
                  (RRM)                                 effects 206–208
            test day records 130                  total genetic merit 208
                                              MME see mixed model equations (MME)
                                              multi-trait across-country evaluations
         MACE see multi-trait across-country        (MACE)
               evaluations (MACE)                 analysis, DYD 86–87
         Markov chain Monte Carlo (MCMC)          computing
               methods 260                           EDC 88–89
         maternal grandsire (MGS) model              sire breeding values 89–91
            description 30                        dependencies 88
            inbreeding coefficients 31            and DRP 87, 89
            pedigree 32                           maternal grandsire model 87–88
            pertains to males 30–31               MME 87
            recoding sires 32                     partitioning, bull evaluations 91–94
             −1
                    −1
            T  and D  matrix, pedigree 32–33  multivariate analysis
            without inbreeding 32                 effects 95
         maternal trait models                    factor analysis
            animal                                   covariances 102
                birth weight, beef calves 110–111    FA model 105
                BLUE 110                             loadings 102
                design matrices 111–114              multi-trait linear mixed
                genetic and permanent                      model 102–103
                      environmental effects 110      WWG and PWG 103–104
                RAM 115–119                       limitations 95
            components 109                        parameter estimation and genetic
            measurements 109                            evaluation 95
            phenotypic expression 109             principal component analysis


          340                                                                 Index
   351   352   353   354   355   356   357   358   359